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Abstract. This paper summarizes the work on implementing few so-
lutions for the Steiner Tree problem which we undertook in the PAAL
project. The main focus of the project is the development of generic im-
plementations of approximation algorithms together with universal so-
lution frameworks. In particular, we have implemented Zelikovsky 11/6-
approximation using local search framework, and 1.39-approximation by
Byrka et al. using iterative rounding framework. These two algorithms
are experimentally compared with greedy 2-approximation, with exact
but exponential time Dreyfus-Wagner algorithm, as well as with results
given by a state-of-the-art local search techniques by Uchoa and Werneck.
The results of this paper are twofold. On one hand, we demonstrate that
high level algorithmic concepts can be designed and efficiently used in
C++. On the other hand, we show that the above algorithms with good
theoretical guarantees, give decent results in practice, but are inferior to
state-of-the-art heuristical approaches.
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1 Introduction

Nowadays, working on state-of-the-art approximation algorithms requires the
knowledge of many high-level tools and concepts. For example, a very successful
line of research in approximation algorithms was based on iterative rounding
idea [20], which lead to an approximation algorithm for the Steiner tree problem
with the best theoretical approximation guarantee [4]. This means that imple-
menting and testing such algorithms in practice is even harder, because one not
only needs to understand these high level concepts but also is required to imple-
ment them. In our PAAL project1 we have undertook a task to provide C++11
implementations of such high level tools including the iterative rounding, and
local search frameworks. These frameworks have been implemented having the
following design considerations in mind:

Easiness to use It should be always possible to build the approximation al-
gorithm by implementing only functions, i.e., no definition of classes are
needed.

Minimalism Our design minimizes number of functions one needs to write in
order to achieve required results. Depending on selected optimization method
programmer needs to provide only functions required for this method.

Speed Our library exploits benefits of static polymorphism supporting pro-
grams in both object-oriented and functional style. It enables compiler to
use more sophisticated code optimization methods, function inlining, loop
unrolling, branch prediction, etc. [10].

Loose coupling Library elements, as much as possible, do not depend on each
other. It is possible to change behaviour of the solver by changing only one
of its elements.

Extensibility One can add new solution strategies, e.g., search strategies, with-
out modifying other elements of the framework.

In the case of local search these design assumption led to a framework, that on
one hand, requires no class and much less function definitions when comparing
it to other existing libraries like: ParadisEO[5], Metslib[21], or Easylocal [7]. On
the other hand, the running time of our implementations, when counting only
the time spend in the library functions, is at least 3 time smaller [7].

The aim of this paper is to report on the PAAL implementations of solutions
for the Steiner tree problem. In this problem we are given an undirected graph
G = (V,E), with edge costs (weights) c : E → Q+, and a subset of nodes T ⊆ V
(terminals), the Steiner Tree problem asks for a tree S spanning the terminals, of
minimum cost c(S) =

∑
e∈S c(e). Note that S might contain some other nodes,

besides the terminals (Steiner nodes).
Steiner Tree problem is NP-hard and even APX-hard to approximate [6], i.e.,

approximating it better then 96/95 = 1.0105 . . . is NP-hard. During recent years

1 The Practical Approximation Algorithms Library (PAAL) is a header-only, generic
library consisting of approximation algorithms, data structures and several complete
solutions for various optimization problems, implemented in C++11 available at
http://paal.mimuw.edu.pl.
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it has become a benchmark problem in approximation algorithms study. Three
main techniques have been used to design approximation algorithms with good
theoretical guarantees for this problem:

– greedy approach gives a 2-approximation [13],
– Zelikovsky introduced local search to obtain an 11/6-approximation [29],
– the best 1.39-approximation was proposed by Byrka et al. [4] and uses iter-

ative rounding.2

We have implement the above 3 algorithms together with an exponential time
exact algorithm given in [11]. The algorithm of Zelikovsky was implemented
using our local search framework, whereas the algorithm by Byrka et al. was
implemented using our iterative rounding framework. More details on the im-
plementations and on how these frameworks aided us are given in the following
sections of this paper. We have decided to compare our algorithms with results
given by the state-of-the-art local search solution by Uchoa and Werneck [25].3

For completeness of this paper we give some details of this solution in Section 6.
The final section of this paper gives the result of our experimental study. A
priori we were suspecting that the iterative rounding algorithm could deliver
comparable results to the state-of-the-art heuristic solutions, as it was the case
for the Minimum Bounded-Degree Spanning Tree (MBDST) problem [3]. How-
ever, the experiments show that this is not the case. On SteinLib [18] instances
iterative rounding has an average approximation rato of 1.029, whereas the so-
lution from [25] gives 1.01 on average. In other words, the additive error of our
solution is on average 3 times higher. There are only few test cases, where it-
erative rounding found better answers. However, we note that the paper [25]
considers 12 different local search algorithms, and only the best one of them
visibly outperforms our iterative rounding implementation.

It appears that the main weakness of this iterative rounding solution is the
need to generate all k-terminal components (i.e., k-terminal subtrees) from which
an approximate Steiner tree can be build. On one hand, it seems that one re-
ally needs larger values of k to guarantee good approximation ratio. On the
other hand, the generation of all such components is a bottleneck in the running
time. When this procedure was implemented following exactly the description
in [4] it took 98% of the running time needed by the algorithm. We have came
up with several optimizations for this procedure, but even using them it still
consumes 80% of the running time. We note that our implementation precedes
the simplifications of Goemans et al. [15] to the algorithm of Byrka et al. [4].
However, these improvements are unlikely to have practical impact as the above
bottleneck is still present there. Although, the implemented algorithms do not
outperform state-of-the-art heuristics, our implementations have demonstrated
that high level approximation algorithms can be implemented in an efficient and
extendable way. As we have already mentioned our local search framework is

2 For the full history of the theoretical studies of this problem please see [4].
3 We would like to thank Renato Werneck for giving us these results, so we did not

have to reimplement their solution.
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easier and faster then alternative solutions, and PAAL library contains local
search solutions for the following problems: traveling salesman problem, facility
location, k-median, and capacitated facility location. On the other, our iterative
rounding framework allowed us to easily implement solutions to the following
additional problems: bounded-degree minimum spanning tree, generalised as-
signment, Steiner network, and tree augmentation.

The paper is composed as follows. The following four sections give the imple-
mentation details of greedy, Zelikovsky, Dreyfus-Wagner, and iterative rounding
algorithms. Next, some details of the local search heuristics are given. Finally,
Section 7 contains the description of our experiments.

2 Greedy 2-approximation

Let G∗ be the metric closure of the graph G, and given a weighted graph H
we denote by MST(H) the minimum spanning tree of H. It is well known that
the minimum spanning tree of a metric closure of the graph restricted to ter-
minals T (i.e., MST(G∗[T ])) is a 2-approximation of the Steiner Tree prob-
lem [26]. The time complexity of a naive implementation of the above algorithm
equals O(|T ||E| log(|V |)), i.e., when one computes the distances from each ter-
minal. PAAL implementation of this algorithm performs one run ofthe Dijk-
stra’s algorithm starting from all terminals at once (see [22] for more details).
This optimization helped us to reduce the time complexity of the algorithm to
O(|E| log(|V |)) (see [23] for the implementation).

3 11/6-approximation

The second algorithm implemented in PAAL is an 11/6-approximation by Ze-
likovsky [29]. We implemented the faster O(|V | · |E| + |T |4) time complexity
version of this algorithm. The algorithm is in a form of a local search, so we use
PAAL’s Local Search framework for the implementation. In particular we use
the Hill Climbing primitive, i.e., we start with some solution and improve it as
long as it is possible. PAAL provides framework for Hill Climbing consisting of
three primitives (components):

– State – current solution,
– Neighbourhood – list of moves that can be applied to a state,
– Gain – difference between the value of a state after and before applying a

move.

We present the outline of our implementation of Zelikovsky’s algorithm. First
the algorithm builds some initial data structures:

– Minimum Spanning Tree on the set of terminals,
– Voronoi regions of terminals: sets of Steiner vertices which are closer to a

given terminal than to any other terminal,
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– centers of terminal triples: for each triple of terminals we find its center, that
is a Steiner vertex which minimizes the sum of distances to the terminals in
the triple.

At each iteration the algorithm builds recursively a save matrix M (as defined
in [29]) with rows and columns labeled by current terminals (some terminals are
contracted during the algorithm). For any given pair of terminals T1, T2, the
element of the save matrix M [T1, T2], contains the cost of the most expensive
edge on the cheapest path from T1 to T2. Next, by using Hill Climbing method,
the algorithm iteratively improves the tree by adding new Steiner points to it.
Each added point is a center of terminal triple and after adding it algortithm
contracts the triple by setting costs of edges between tripple’s vertices to 0. The
pseudocode of the algorithm is given as Algorithm 1.

Algorithm 1 Pseudocode of Zelikovsky algorithm

tree← MST(G∗[T ])
selected nonterminals← ∅
find Voronoi regions of all terminals
for each triple ∈ triples of terminals do

center(triple)← center of triple (as defined before)
cost(triple)← sum of distances from the center to triple vertices

end for
loop

save← save matrix of the tree
move← triple which maximizes:

gain← max
e∈triple

save(e) + min
e∈triple

save(e)− cost(triple)

if gain ≤ 0 then exit loop
else

contract move
selected nonterminals← selected nonterminals+ center(move)

end if
end loop
return MST (G∗[T ∪ selected nonterminals])

Graph operations were implemented using Boost Graph Library [24]. Algo-
rithm for computing Voronoi regions is implemented as a part of PAAL. Calcu-
lation of the save matrix is implemented recursively as it was presented in the
original paper. Full C++ code can be found at [28].

4 Dreyfus-Wagner Algorithm

The Dreyfus-Wagner algorithm [11] finds an optimum solution to the Steiner
Tree problem in exponential time (with respect to the number of terminals):
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O(3|T ||V | + 2|T ||V |2). It will be also used to solve subproblems in the Iterative
Rounding algorithm.

Our implementation is a straightforward recursive implementation of the
Dreyfus and Wagner dynamic programming methods. For X ⊆ T and v ∈ V \X
we define C(v,X) as the minimum cost of the Steiner tree spanning X ∪ {v}
and B(v,X) as the minimum cost of the Steiner tree spanning X ∪{v}, where v
has degree at least two. The Dreyfus-Wagner algorithm is based on the following
recursive formulas. The first formula comes from the fact, that given an optimal
Steiner tree spanning X ∪ {v} in which the degree of v is at least two, we can
split the tree at v into two subtrees: one spanning Y ∪ {v} and one spanning
(X \ Y ) ∪ {v}, hence:

B(v,X) = min
∅⊂Y⊂X

{C(v, Y ) + C(v,X \ Y )}. (1)

To get the second formula, let us consider the optimal Steiner tree spanning
X ∪ {v}, in which the degree of v is 1. In such case, the tree path form v leads
either to a vertex u ∈ X or a vertex u ∈ V \X of degree at least three, so:

C(v,X) = min{min
u∈X
{C(u,X \ {u}) + d(u, v)}, min

u∈V \X
{B(u,X) + d(u, v)}} (2)

Where d(u, v) is the shortest distance between u and v. In order to avoid calcu-
lating values B(v,X) and C(v,X) for the same states multiple times, we store
the values for all previously processed states in a map. Full C++ implementation
can be found at [1]

5 Iterative Rounding 1.39-approximation

Our last implementation is the LP-based randomized 1.39-approximation algo-
rithm by Byrka et al. [4]. It is currently the best known approximation algorithm
and is based on the Iterative Rounding technique introduced by Jain [17]. In the
Iterative Rounding method we solve an LP-relaxation of the given problem,
possibly obtaining a non-integer solution. We then iteratively round some LP
variables according to problem-specific rules and resolve the modified LP, until
we obtain an approximate solution to the original problem.

PAAL provides a generic framework for Iterative Rounding methods. Imple-
menting an algorithm within this framework is based on providing the following
primitives (components):

– Init – a functor responsible for initializing the LP for the given problem and
initializing some additional data structures,

– DependentRound – a functor responsible for performing dependent LP round-
ing (rounding based on all of the LP variables values),

– SetSolution – a functor responsible for constructing the solution of the orig-
inal problem.

– SolveLP – a functor responsible for solving the LP for the first time,
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– ResolveLP – a functor responsible for resolving a previously solved and mod-
ified LP,

– StopCondition – a functor responsible for checking the stop condition for the
Iterative Rounding main loop.

5.1 1.39-approximation Algorithm

The 1.39-approximation algorithm is based on an LP-relaxation known as the
directed-component cut relaxation (DCR). First we need to give some necessary
definitions afte [4].

Given a subset of terminals T ′ ⊆ T and a terminal t ∈ T ′ we define a
directed component C on terminals T ′ with sink t as a minimum-cost Steiner
tree on terminals T ′, with edges directed towards t. We call the terminals of a
component C other then sink(C) as sources(C) = V (C)∩T \{sink(C)}. We also
denote the cost of a component as c(C), the set of all components as Cn and
we say that a component C crosses a set U ⊆ T if C has at least one source in
U and the sink outside U . By δ+Cn

(U) we denote the set of directed components
crossing U .

By selecting an arbitrary terminal r as a root, we can now formulate the
DCR:

minimize
∑
C∈Cn

c(C)xC

such that
∑

C∈δ+Cn
(U)

xC ≥ 1 ∀U ⊆ T \ {r}, U 6= ∅

xC ≥ 0 ∀C ∈ Cn

(3)

As the size of the set Cn is exponential, we restrict it to a set Ck of directed
components that contain at most k terminals (where k is a constant number).
By replacing Cn with Ck in the DCR formulation, we obtain a k-DCR with
polynomially many variables and exponentially many constraints. Despite the
exponential number of constraints, the k-DCR can be solved in polynomial time
using the so-called separation oracle (more details are given in the following
sections).

Using the k-DCR formulation, we can give the pseudocode of the randomized
1.39-approximation algorithm:

5.2 Algorithm Implementation

To simplify the implementation we convert, without loss of generality, the input
graph into its metric closure (complete weighted graph on the same nodes, with
weights given by the shortest paths in the original graph).

The algorithm was implemented using the previously described PAAL Itera-
tive Rounding framework. The main part of the implementation are the necessary
framework primitives:
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Algorithm 2 Pseudocode of the randomized 1.39-approximation

for i = 1, 2, . . . do
Ck ← all components on at most k terminals, each generated using Dreyfus-

Wagner algorithm.
Solve the k-DCR.
Select one component Ci, where Ci = C with probability xC/

∑
C′∈Ck

xC′ .
Contract terminals of Ci into its sink.
if Only one terminal remains then

imax ← i
exit loop

end if
end for
return

⋃imax
i=1 Ci

– steiner tree init – generates the Ck set and initializes the LP. To generate Ck
we iterate over all subsets of T of size at most k and use the Dreyfus-Wagner
algorithm to find the optimal Steiner tree on each subset.

– steiner tree round condition – selects one random component C with prob-
ability xC/

∑
C′∈Ck

xC′ . Contracts terminals of C into its sink and updates
the metric distances from the contracted node and reinitializes Ck and the
LP (using steiner tree init).

– steiner tree stop condition – checks if the number of remaining terminals is
equal to 1.

– steiner tree set solution – joins the sets of Steiner vertices from components
selected in each phase.

The remaining primitives are the ones responsible for solving the LP. We detail
their implementation in the following section.

Solving the LP As mentioned previously, the k-DCR LP has polynomially
many variables but exponentially many constraints. The authors of the original
paper [4] show, that the k-DCR can be reformulated into an equivalent polyno-
mial sized LP by considering an nonsimultaneous multicommodity flow problem
in an auxiliary directed graph. Despite its polynomial size, the equivalent for-
mulation still has a large number of constraints: O(k|T |k+1). We modify the
approach from [4] and provide a separation oracle for the k-DCR and use it
together with the row generation technique.

A separation oracle for an LP is an algorithm, which given a solution of
the LP decides whether the solution is feasible or if not, returns a constraint
violated by the solution. We can use the separation oracle to implement the
row generation technique. This technique uses the following approach: solve an
LP that contains only a subset of the constraints (the subproblem), let a basic
optimal solution be x0. If the oracle shows that x0 satisfies all the constraints,
then x0 is a basic optimal solution of the original problem (since it is optimal
for the subproblem, which is a relaxation, and feasible for the original). If, on
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the other hand, the oracle finds a violated constraint, then add this constraint
to the subproblem, and iterate the process.

Let us now describe the separation oracle for the k-DCR (it is similar to the
oracle for the directed cut formulation described in [19]). Consider an auxiliary
directed graph G′ = (V ′, E′), where V ′ = T ∪ {vC |C ∈ Ck}. For every C ∈ Ck
we add an edge eC = (vC , sink(C)) and edges (u, vC) for every u ∈ sources(C).
Let the edges eC have weights xC (the value of variable xC in the solution being
checked by the oracle), while the other edges have infinite weights.

Now consider a minimum directed cut in G′ separating a vertex v ∈ T \ {r}
and r. Let the cut be (T1 ∪ C1, T2 ∪ C2), where T1, T2 ⊂ T , v ∈ T1, r ∈ T2,
C1, C2 ⊂ {vC |C ∈ Ck}. If for some u ∈ T1 there would exist a component Cu,
such that u ∈ sources(Cu) and vCu

∈ C2, then the weight of the cut would be
infinite and the cut would not be minimal. Thus for every u ∈ T1 all components
which contain u as a source must belong to C1. The weight of the cut is equal
to:

w(T1 ∪ C1, T2 ∪ C2) =
∑

{C∈C1|sink(C)∈T2}

xC (4)

It is easy to see, that for a given T1 this weight is minimal when C1 does not
contain any components C ′, such that sources(C ′) ∩ T1 = ∅. In such case the
weight of the cut is equal to the sum of xC for components, which have at least
one source in T1 and the sink outside T1 (components crossing T1):

w(T1 ∪ C1, T2 ∪ C2) =
∑

C∈δ+Ck
(T1)

xC (5)

That way, we can describe the separation oracle for k-DCR: for all v ∈
T \ {r} we check (using a polynomial minimum cut algorithm) if the weight of
the minimum directed cut separating v from r is greater or equal to 1. If not,
then the set C1 defined by the minimum cut gives us a violated constraint.

We tried several heuristics to improve the running time of the row generation.
First we tried to find the most violating constraint (that is, we iterate over all
v ∈ T \ {r} and select the smallest of all found cuts). We also tried to stop the
search as soon as the first violated constraint was found (so we do not have to
compute all |T | − 1 minimum cuts). The best running time was obtained by the
following randomization: we choose a random permutation of T \ {r} every time
we use the oracle (as opposed to using the same permutation every time) and
then we search until the first violated constraint is found.

We need to note that the row generation algorithm does not have a polyno-
mial running time guarantee. An LP can be solved in polynomial time using a
polynomial separation oracle [16] by the ellipsoid algorithm. However, because of
the high complexity of the ellipsoid algorithm the row generation method works
better in practice.
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5.3 Components Generation

Experiments with the implementation have shown that generation of components
is the bottleneck of the algorithm. To generate the set Ck, we iterate over all
subsets of T with at most k elements and for each of them we run the Dreyfus-
Wagner algorithm. Thus, the time complexity of this phase of the algorithm
is O(|T |k · (3k|V | + 2k|V |2)). Because of that, even for small values of k, for
example k = 4, this phase is the bottleneck of the algorithm (for most instances
component generation takes over 90% or even close to 100% of the total runtime).

To improve the algorithm running time we tested some optimizations for
the component generation phase. First optimization comes from the fact, that
we convert the graph into its metric closure. In such complete graph, for every
subset T ′ of T we can find a tree with leafs form T ′ and not containing any other
terminals (a component on T ′). However, for some subsets T ′ there may not exist
such a tree in the original graph. Because of that, we can ignore such subsets
and decrease the number of calls to the Dreyfus-Wagner algorithm. To decide if
a subset T ′ can produce a valid component, we need to check if there exists a
path in the original graph between each two terminals form T ′ consisting only
of non-terminals. After initial preprocessing in O(|T | · (|V |+ |E|)) time (running
a BFS algorithm from each terminal), such check can be performed in O(|T ′|2)
time.

The speedup given by the above optimization depends heavily on the problem
instance: it gives an improvement only in cases where many terminal pairs cannot
be connected by a path consisting only of non-terminals. For such instances the
optimization improved the algorithm running time by up to 5 times, however
the component generation still remained the bottleneck of the implementation.

Components Generation Optimization The performance of the component
generation is determined by the time spend in the Dreyfus-Wagner algorithm.
In order to improve the component generation running times, we need to look
into the details of that algorithm.

The Dreyfus-Wagner method is based on recursive caltulation of functions
B(v,X), C(v,X) for certain nodes v ∈ V and terminal subsets X ⊆ T (of de-
creasing size). In the component generation phase of the IR algorithm, we repeti-
tively run the Dreyfus-Wagner algorithm for different sets of terminals. However,
it is easy to see, that functions B and C for many states (v,X) are calculated for
more then one component. We can use this observation to implement the follow-
ing optimization: we are going to store the values of B and C for all previously
calculated states (from all previous components, not just the current one). Using
the above optimization we were able to reduce the time complexity of component
generation from O(

∑k
i=2

(|T |
i

)
(3i|V |+ 2i|V |2)) to O(

∑k
i=2

(|T |
i

)
(2i|V |+ |V |2)).

This optimization gave a big improvement to the algorithm running time. For
instances, which previously were solved in under 10 minutes, the optimization
gave an average speedup of 6-10 times (depending on k) and up to 100 times
speedup for some instances. It also increased the number of instances solved
within the 10 minutes time limit by 10% for each tested parameter k. After the
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optimization, the component generation phase took approximately 80% of the
total running time as opposed to the previous 98-99%, however it still remained
the bottleneck of the algorithm.

6 State-of-the-Art Multistart Local Search

We compare our approximation results with a results obtained using the best
one out of the local search algorithms proposed by Uchoa and Werneck in [25],
i.e., multistart heuristic (MS). For completeness of the paper we we will describe
shortly their approach. We did not implement the heuristic by ourselves we just
compare our results with results obtained from [25] authors.

The multistart heuristic: works in two phases. During the first phase it builds
an initial MST using Shortest Path Heuristic (SPH). During the second phase it
improves the MST using Hill Climbing for as long as improvement are possible
using three types of moves. Authors restart the algorithm up to 100 times using
different starting points for the SPH.

6.1 Shortest Path Heuristic

Shortest Path Heuristic greedily builds a initial Steiner tree in as shown in
Algorithm 3. The tree built by the SPH depends on the choice of the starting

Algorithm 3 Shortest Path Heuristic

tree← random node
while there are some terminals not in tree do

t← terminal not in tree that is closest to some node in tree
tree← tree+ shortest path from t to tree

end while

node, and on choices of nodes and paths made when there is a tie. Local Search
algorithm builds only one tree for one starting node, but the whole procedure is
used multiple times for randomly selected starting nodes.

6.2 Hill Climbing

After an initial tree is build using the SPH, it is improved using three types of
moves via Hill Climbing method. The following moves are applied to the tree
until no further improvement can be made.

Steiner Node Insertion. The first move type is the insertion of a Steiner node
into the tree. We search for a vertex v /∈ tree, such that the cost of MST(G[tree∪
{v}]) is smaller than the cost of MST (G[tree]). If such node is found it means
we have found a tree spanning all terminals which has a smaller cost than the
previous one. We add this node to the set of selected Steiner points.
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Key Path Exchange. A key node in a Steiner tree is a non-terminal node
with a degree at least three. Crucial nodes of a Steiner tree are all terminals and
key vertices. A key path is a path that connects two crucial nodes and has no
internal crucial node.

The second kind of moves is a key path exchange. It removes a key path
by splitting the tree into two connected components and then reconnects them
using a new path. All improving key paths exchanges can be found by run-
ning Dijkstra’s algorithm for each of the O(|T |) key paths in the tree. The
total running time of this algorithm when using Fibonacci heaps would be
O(|T |(|E| + |V | log |V |)) [27]. This time can be improved by using sequences of
Voronoi diagrams as shown in [25], what gives an O(|E| log |V |) time algorithm
for finding this improvement.

Key Vertex Elimination. Key nodes succinctly describe Steiner tree of a
graph [12]. The third type of moves is the key vertex elimination. Let K be the
set of key nodes in tree. We want to find a vertex v in K such that the cost
of MST(G∗[K ∪ T − v]) is smaller then MST(G∗[K ∪ T ]). Such vertex could be
found by calculating MST for each of possible O(|T |) vertices v ∈ K, however,
it would give us an O(|T |(|E| + |V | log |V |)) time algorithm [8]. In [25] authors
improve running time of key vertex elimination to O(|E| log |V |).

7 Experiments

We have tested our implementations on data sets from SteinLib [18]. All tests
were run with a timeout of 10 minutes. Most of the algorithms did not manage
to solve all test cases in this time bound. The numbers of solved test cases are
shown in Table 1. The table gives both the results for the IR implementation with
and without the component generation optimization. In our further discussion
we consider only the fastest (optimized) version of the algorithm.

All of our programs where compiled with -O3 optimization option using gcc
4.8.1. We used a 24 core Intel Xeon CPU E5649@2.53GHz machine with Ubuntu
12.04 installed. The computer was equipped with 64GB of RAM. For solving the
LP in the Iterative Rounding algorithm we used the GLPK LP solver [14]. We
have not implemented Local Search on our own, since we got results from Uchoa
and Werneck [25]. Their running times are always lower than 3 minutes and,
unlike us, they implemented the algorithm using C#.

7.1 Comparison of the Main Algorithms

Figure 1 shows comparison of approximation ratios of four main algorithms:
greedy 2-approximation, Zelikovsky algorithm, Local Search and IR for k = 5.
We define approximation ratio as cost of algorithm solution divided by best
known cost from SteinLib. The figure shows only those cases for which all algo-
rithms were able to find solutions within the time limit, so there are 497 points.
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Table 1. Numbers of solved SteinLib instances using different algorithms. IR optimized
refers to the IR implementation with the component generation optimization.

Algorithm Solved cases Percent

Dreyfus Wagner 308 30%
Greedy 2 approx 1021 100%
Zelikovsky 964 94%
IR k = 2 770 75%
IR k = 2 optimized 858 84%
IR k = 3 695 68%
IR k = 3 optimized 762 75%
IR k = 4 550 54%
IR k = 4 optimized 617 60%
IR k = 5 389 38%
IR k = 5 optimized 514 50%
IR k = 6 optimized 452 44%

There are four histograms and we can easily see that for test cases from Stein-
Lib Local Search achieves the best results, being slightly better than Iterative
Rounding.

Every point on each of scatter plots represents one test case with its approxi-
mation ratios on x and y axis. We can see that there are cases for which Iterative
Rounding performs better than Local Search.

Table 2 shows average approximation ratios and running times in seconds for
each difficulty class, as defined in SteinLib [18].

Table 2. Average approximation ratios and running times in seconds of our algorithms
for different SteinLib classes.

Class Greedy Zelikovsky IR k = 5 Local Search
ratio time ratio time ratio time ratio

euclidean 1.033 0.004 1.004 0.014 1.009 80.040 1.000
fst 1.037 0.002 1.017 0.125 1.030 73.642 1.001
hard 1.144 0.001 1.047 0.008 1.009 12.164 1.000
incidence 1.253 0.009 1.093 0.183 1.040 24.659 1.003
random 1.064 0.008 1.033 0.400 1.010 43.354 1.000
vlsi 1.052 0.007 1.012 0.146 1.011 70.459 1.000

average 1.140 0.006 1.052 0.176 1.028 46.983 1.001

7.2 Approximation Ratio of Iterative Rounding Depending on k

Figure 2 shows approximation ratios of IR depending on the value of k. On aver-
age, with increasing k approximation ratio gets closer to 1. There are some cases,
where for bigger k IR gives worse results (we need to remember, however, that
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Fig. 1. Comparison of approximation ratios of following Steiner tree algorithms:
Greedy, Zelikovsky, LS and IR (k = 5) on cases from SteinLib. There are four his-
tograms on the plot, one for each algorithm. Histograms’ bins show number of test
cases (on y-axis) that fell into each interval of approximation ratios (on x-axis). Scat-
ter plots compare performance of pairs of algorithms. Points on scatter plots represent
test cases with approximation ratios achieved by compared algorithms on x and y-axis.

the IR is a randomized approximation algorithm). Table 3 shows average ap-
proximation ratios and average running times of Iterative Rounding for different
values of k and different SteinLib dificulty classes.

7.3 Results

Comparing the 3 approximation algorithms implemented as a part of this work
we see that for big enough parameters k (k ≥ 4), the results returned by the
IR algorithm are better then those returned by both the greedy and Zelikovsky
algorithms.

On the other hand, the running times of the IR algorithm are much higher
then for the other two algorithms. Also, while both the greedy and Zelikovsky
algorithms were able to solve over 90% of SteinLib instances within our 10 minute
time limit, the IR for k = 4 solved only 60% of the instances, and that number
decreases for bigger values of k.
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Fig. 2. Comparison of approximation ratios of Iterative Rounding depending on differ-
ent values of k on cases from SteinLib. There are four histograms on the plot, one for
each value of k ∈ {2, 3, 4, 5}. Histograms’ bins show number of test cases (on y-axis)
that fell into each interval of approximation ratios (on x-axis). Scatter plots compare
performance of pairs of algorithms. Points on scatter plots represent test cases with
approximation ratios achieved for compared values of k on x and y-axis.

The MS Local Search heuristics from [25] gives, on average, lower costs then
all of the algorithms with theoretical guarantees we have implemented. It was
also able to solve all SteinLib instances in under 3 minutes. Note, however, that
the paper [25] gives 12 different versions of the local search and only the best
one of them visibly outperforms our IR algorithm. The other ones give worse or
comparable results.

Additionally, we have compared our IR results with few other papers. Our
algorithm for k > 4 gives better results then the Tabu Search from [2], whereas
it improves slightly over the results from [9] only on incidence class of SteinLib
instances.

To summarize, the Iterative Rounding 1.39-approximation algorithm, which
was the main interest of this paper, does seem to give approximation results that
compare decently with other approaches. It is only outperformed by the best of
Local Search implementations. However, despite good theoretical approximation
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Table 3. Average approximation ratios and running times in seconds of the 1.39-
approximation algorithm for different SteinLib classes and different values of k.

Class IR k = 2 IR k = 3 IR k = 4 IR k = 5
ratio time ratio time ratio time ratio time

euclidean 1.040 0.099 1.020 0.855 1.016 10.558 1.009 80.040
fst 1.126 7.537 1.044 10.317 1.033 28.813 1.030 75.684
hard 1.283 0.366 1.042 5.055 1.022 8.600 1.009 12.164
incidence 1.307 0.256 1.094 0.394 1.060 2.693 1.040 24.659
random 1.152 1.076 1.050 1.159 1.030 8.534 1.010 43.354
vlsi 1.083 1.027 1.024 1.104 1.014 17.915 1.011 70.459

average 1.202 2.211 1.063 3.111 1.041 12.307 1.028 47.527

ratio and decent experimental quality of solutions, it’s running time is visibly
higher then the one of the state-of-the-art heuristics like Local Search algorithms.
Nevertheless, the most important goal of this study, i.e., to demonstrate that
high-level approximation algorithm concepts can be implemented efficiently was
accomplished successfully. Having implementations of these concepts available it
is easier to continue the work on hybrid solutions that would combine the best
aspects of different approaches and could potentially lead to better results.
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