
A Fast Algorithm for Rectilinear Steiner Trees with
Length Restrictions on Obstacles

Stephan Held1 and Sophie Theresa Spirkl2

1 Research Institute for Discrete Mathematics, Bonn, Germany
held@or.uni-bonn.de

2 Princeton University, Princeton NJ 08544, USA
sspirkl@princeton.edu

Abstract. We study the minimum rectilinear Steiner tree problem in the presence of
obstacles. Traversing obstacles is not strictly forbidden, but the total length of each con-
nected component in the intersection of the tree with the interior of the blocked area is
bounded by a constant.
This problem is motivated by the layout of repeater tree topologies, a central task in chip
design. Large blockages might be crossed by wires on higher layers, but repeaters may
not be placed within the blocked area. A too long unbuffered piece of interconnect would
lead to timing violations.
We present a 2-approximation algorithm with a worst case running time of O((k log k)2),
where k is the number of terminals plus the number of obstacle corner points. Under mild
assumptions on the obstacle structure, as they are prevalent in chip design, the running
time is O(k(log k)2). Compared to strictly obstacle-avoiding trees, the algorithm provides
significantly shorter solutions. It solves real world instances with 783 352 terminals within
126 seconds, proving its practical applicability.
This work has previously been published at ISPD’14, Petaluma, CA, USA.

1 Introduction

The computation of Steiner topologies for buffering is a central task in VLSI design [2, 3, 8].
Buffering is often restricted by macro cells, where no repeaters can be placed. This holds partic-
ularly for top-level layout that is dominated by big macros leaving only small gaps for buffers.

The wires, on the other hand, may well reach over the macros on higher routing layers.
However, if an unbuffered component of wire gets too long, it will lead to capacitances, slew, or
delay violations. This motivates bounding the length of tree components on top of macros.

Given a finite set of rectilinear obstacles in the plane and a reach-length L ≥ 0, a set of
axis-parallel segments is called reach-aware, if the total length of every connected component of
its intersection with the interior of the blocked area (the closed union of all obstacles) has length
at most L. This definition of reach-awareness is motivated by the assumption that a repeater
can be placed arbitrarily close to the boundary of the blocked area, but not in its interior. We
call a point blocked if it is in the interior of the blocked area.

The reach-aware Steiner tree problem (RASTP) is also known as the length restricted Steiner
tree problem, introduced by Müller-Hannemann and Peyer [16]. The input consists of a finite
set S ⊂ R2 of terminals, a finite set O of rectangular obstacles such that no terminal is placed
in the interior of the blocked area (s ∩ (

⋃
o∈O o)

◦ = ∅ for all s ∈ S), and a parameter L ∈ R≥0.
The goal is to find a shortest reach-aware rectilinear Steiner tree connecting these terminals.

For L = ∞ or O = ∅, the RASTP becomes the rectilinear Steiner tree problem, thus it is
NP -hard. For L = 0, it is known as the obstacle-avoiding rectilinear Steiner tree problem [7].
Figure 1 shows examples of a minimum obstacle-unaware tree (L = ∞) with a large blocked

obstacle-unaware obstacle-avoiding reach-aware

Fig. 1. Optimum solutions for different reach-lengths.

component, a minimum obstacle-avoiding tree (L = 0) taking a long detour, and a minimum
reach-aware tree, where only the thin vertical obstacle can be passed by the choice of L.

There is extensive literature on fast algorithms for the case L = 0, which typically provide an
approximation guarantee of two, the Steiner-ratio in graphs, [6, 12–14]. Our algorithm is based on
the early work of Clarkson et al. [5], which introduced the notion of a visibility graph containing
shortest paths between all pairs of terminals and obstacle corner points (for L = 0). Its size is
bounded by O(k log k) and it can be constructed in O(k(log k)2) time, where k = |S|+ |O|. The
currently most efficient exact algorithms for L = 0 can be found in [10].

For arbitrary L, [16] developed approximation algorithms based on an augmented Hanan
grid. The size of this grid, bounded by O(k2), is denoted by l. Using a minimum spanning
tree heuristic, they present an O(l log l) algorithm with an approximation ratio of 2. Under the
additional assumption that all blockages are disjoint rectangles, they refine their construction
further, obtaining approximation guarantees of 5

4α and 2s
2s−1α for s ≥ 4 with graph size O(l)

and O(ls−2), respectively, where α is the performance guarantee of a Steiner tree algorithm
in graphs. However, their results are predominantly of theoretical interest, since even their 2-
approximation algorithm would be very slow in practice due to the quadratic size of the Hanan
grid.

Our problem is related to [9], who consider slew constraints instead of a reach-length L and
provide an exact algorithm for this problem. In the RASTP, the reach-length can be used to
bound the slew degradation on wires, though not as precisely as in [9]. However, we believe that
it enables simpler and faster algorithms that are more suitable for a quick processing of the
majority of nets.

A similar problem was also considered by [17], who incrementally update a rectilinear Steiner
minimum tree to satisfy slew constraints. However, they do not give any performance guarantee
for the approximation quality or running time.

Our algorithm produces short trees, but does not balance source-sink path lengths within
the tree. However, in combination with the shallow light Steiner arborescence algorithm in [8]
it can easily be extended to provide not only short but also fast reach-aware Steiner trees.

Note that for our definition, the restriction due to obstacles depends only on the blocked area
and is independent of its representation by a union of rectangles. It differs from the one used
in many recent publications on obstacle-avoiding rectilinear Steiner trees even for L = 0. For
example, [10, 9] consider line segments on which two (polygonal) obstacles touch as not blocked
and specifically only consider rectangular blockages. This definition depends on the particular
representation of the blockages by polygons or rectangles. As no buffers can be placed on a line
between two obstacles, we consider our definition more appropriate for our application.

In Section 3, we will see that one of the standard benchmarks for obstacle-avoiding trees
contains a terminal isolated by a ring of obstacles and becomes infeasible with our definition
and L = 0 (see Figure 6), which was also noted by [17], whereas in [10, 9] this instance is

reported as feasible due to their different definition of the blocked area. It should be noted that
the approach in [10, 9] and many other publications would be adjustable to our definition (and
L = 0).

In addition, our definition allows to compress or modify the representation of obstacles for
the needs of the algorithm or its subroutines. In the following, we can assume that all obstacles
are given as rectangles with pairwise disjoint interior and unblocked rectangle corners, e.g. by
covering the blocked area with rectangles of maximal width and representing it as their union.

Finally, we can naturally model rectilinear polygons with rectilinear holes, which are often
left out of big macros to serve particularly as buffer positions.

The remainder of the paper is organized as follows. In Section 2 we will give a detailed
description of our algorithm. The performance on standard benchmarks as well as on practical
instances is demonstrated in Section 3, followed by a conclusion in Section 4.

2 Algorithm

Our algorithm has two main phases: First, we construct a shortest-path-preserving graph (visi-
bility graph) for the set of endpoints, by which we denote the union of the terminals S and the
corner points of obstacles. In this graph, we use a Dijkstra-Kruskal approach [13] to compute a
Steiner tree for the terminal set S. Simple local search heuristics are used as a post-optimization
step.

The approximation ratio of this algorithm is at most two, since the computed Steiner tree
is as most as long as a minimum terminal spanning tree in the visibility graph.

2.1 Reach-Aware Visibility Graph

The concept of a visibility graph for dealing with paths among polygonal obstacles was first
introduced by Clarkson et. al. [5] for the obstacle-avoiding case. It is based on the key idea
that every shortest path can be modified (while preserving the length) in such a away that
it consists of shortest paths from one endpoint (terminal or blockage corner point) to another
and the interior of the bounding box of two consecutive endpoints intersects neither blockages
nor terminals. We will prove similar results for the reach-aware case, and based on that, give a
precise construction of our visibility graph in the next section.

The construction then ensures that between each pair of endpoints, there is a so called median
line, a vertical line to which both endpoints are connected by a horizontal segment (if possible).
If the bounding box is completely unblocked, this is always possible. Using the argument above,
this construction is indeed shortest-path-preserving. Note that horizontal instead of vertical
median lines could be used equivalently.

In the remainder of the paper, we will often use the notion of empty bounding boxes.

Definition 1 (Empty Bounding Box). Given points s, t ∈ R2, their bounding box is called
empty if it does not contain any endpoints except for (potentially) s or t.

Note that empty bounding boxes may intersect blockages whose endpoints are located outside
the box. The emptiness of a bounding box also depends on its boundary, thus it depends on the
choice of its spanning corners s and t.

In the obstacle-avoiding case as in [5], it is always possible to insert a median line and
connecting segments if the bounding box of two endpoints is empty (and such a connection
does not cross blocked area). Here, this does not hold and we have to develop a more elaborate
construction.

Fig. 2. Obstacle corner (green disk) and its vertical mirror point (blue square).

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 3. Configurations in an empty bounding box.

First we extend the set of endpoints. As endpoints are connected to median lines via hori-
zontal lines only, we provide vertical edges across blocked area in the following way.

If an obstacle corner is on the lower or upper boundary of the blocked area and the vertical
connection across the blocked area to the next unblocked point has length bounded by L, we
add that point and connect the two (see Figure 2). Analogously, if it is on left or right boundary
of the blocked area, we add a horizontal connection and mirror point across the obstacle. In
the following we call such a connection point a mirror point, and add all mirror points to the
(extended) set of endpoints

E := { endpoints and mirror points }.

Each obstacle corner has at most one vertical and one horizontal mirror point, because it
cannot be blocked from both above and below. The same is true for horizontal connections.

Now, assume that there is an `1-shortest reach-aware path between two points in E with
empty bounding box (w.r.t. E), then three cases can occur:

1. If the median line is unblocked at the y-coordinate of one endpoint, it must be unblocked
at the y-coordinate of the other endpoint (by the insertion of the mirror points). We simply
connect the endpoints to the median (Figure 3(a)).

2. If the median is blocked at the y-coordinates of the endpoints and the two spanning corners
are not the only unblocked points in their (closed) bounding box, we must have a situation
as in Figure 3(b). If the connections shown in Figure 3(b) are reach-aware, we insert them.
Steiner points added along obstacle boundaries will be connected in a post-processing step.

3. If the entire bounding box except for the spanning corners in blocked, the endpoints will
be connected diagonally if they can see each other, i.e. their `1-distance is less than L
(Figure 3(c)).

The black lines in Figure 3 show the new construction, the shaded black lines are the median
and connecting lines that would be inserted without blockages.

Note that mirror points are determined regardless of the Steiner tree and are added to E ,
whereas Steiner points added on median lines such as in Figure 3(a) or obstacles boundaries as
in Figure 3(b) are not considered endpoints.

s

t

(a) Staircase between s and t
for given endpoints (green); P is
drawn schematically.

s

t

qp

(b) Construction of p. New path
preserves `1-length.

Fig. 4. Subdivision of P for the proof of Lemma 1.

For the reach-aware case, we can now prove a result similar to Clarkson’s about `1-shortest
paths, i.e. paths whose length equals the `1-distance of their endpoints:

Lemma 1. Given a set of rectilinear obstacles, a set of terminals in the plane, and a parameter
L, any shortest path between two points w.r.t. the `1-norm that is reach-aware can be modified
so that the bounding box of two consecutive endpoints on the path does not contain another
endpoint. This modification preserves length and reach-awareness.

Proof (of Lemma 1). Let s and t be two points with non-empty bounding box and P an `1-
shortest s-t-path that is reach-aware; without loss of generality let s = (0, 0) and t = (x, y) with
x, y > 0. Consider the set of endpoints in the bounding box of s and t. For these points, we
define a staircase as the boundary of the (not necessarily closed) region of all r ∈ R2

≥0 such that
the bounding box of s and r is empty (see Figure 4(a), staircase shown in purple).

Let q be the first intersection point (starting from s) of P (black path) with this staircase
as in Figure 4(b). Consider the bounding box of q and s. By the choice of q, there is at least
one endpoint on its boundary. Among these let p be the one closest to s. Modify P to pass
through this point (light blue path) and note that the length remains the same. Furthermore,
the bounding box of p and s is empty.

P remains reach-aware, because blockages intersecting the bounding box of s and q have a
very simple structure; in fact, – because there can be no corner in its interior – all of them have
to intersect the entire bounding box either in a vertical (as shown) or horizontal rectangle whose
endpoints lie on the outside. Either way, the blockages must have intersected P before, and the
intersected length of the new path with the blockage is minimal; since P was reach-aware, so
is the new path. Inductive application of this modification to the rest of P between p and t
transforms P into the desired form in at most O(|S|+ |O|) steps.

This can be generalized to reach-aware shortest paths:

Theorem 1. Given a set of rectilinear obstacles, a set of terminals in the plane, and a parameter
L, any path P between two endpoints that is reach-aware and shortest possible can be modified so
that the bounding box of two consecutive endpoints on the path is empty, and P restricted to that
bounding box is an `1-shortest path. This modification preserves length and reach-awareness.

Proof ((Sketch)). We begin by applying Lemma 1 to all path segments of P that are `1-shortest
paths. Now consider two consecutive endpoints s and t such that the path between them is
not an `1-shortest path. We will show that P is not shortest possible. As a result, if we know

s t

p

q

(a) s and t are consecutive end-
points. Their bounding box con-
tains no reach-aware s-t-path.

s t

p

q

(b) P can be shortened

Fig. 5. Configuration in the proof of Theorem 1.

that the path between two consecutive endpoints is always `1-shortest, the theorem follows from
Lemma 1.

Let p be the last point on P from s to t such that the path from s to p is an `1-shortest
path; let q be the last point or t (whichever comes first) from p to t on P such that pq is an
`1-shortest path. Note that p 6= t is not an endpoint, but q = t is possible.

By our initial application of the previous lemma, we know that the bounding boxes of s and
p and p and q are empty.

From the proof of Lemma 1, it is clear that between s and any point in the bounding box of
s and p there is a reach-aware `1-shortest path, so q cannot be in that bounding box, because by
choice of p and q, spq is not an `1-shortest path and replacing spq by sq would make P shorter
and preserve reach-awareness, a contradiction.

If the bounding boxes of s and p and p and q intersect only in p, then sq is an `1-shortest
path, which is a contradiction to our choice of p. Hence, the bounding boxes must intersect in
a line segment as in Figure 5.

As in the previous lemma, since we know that the gray shaded bounding boxes are empty,
any blockage intersected by the modified path must be intersected by spq for at least as long
a segment. The new path (shown in light blue) is therefore reach-aware, and an `1-shortest
s-q-path; it is strictly shorter than spq. Therefore, P is not shortest possible, which concludes
the proof.

With this theorem, a construction similar to Clarkson et al. [5] can produce a reach-aware
visibility graph. However, further caution is required in this case, because we must guarantee
that any Steiner tree extracted from the visibility graph is reach-aware. This entails more than
ensuring that any edge is reach-aware, because several edges may belong to the same connected
component when intersected with the interior of the blocked area.

A simple solution to this is forbidding blocked Steiner points, and making sure that every
edge is reach-aware. Together with the condition that there is a shortest path (if it exists)
between any two vertices with empty bounding box in the visibility graph, this implies the
correctness of the second part of our algorithm.

2.2 Visibility Graph Construction

Now we will show how to efficiently find a graph with the properties stated in the previous
section. The main idea in [5] is to introduce the median lines recursively, i.e. to insert a median
line at the median of all x-coordinates of the endpoints (and thus between every pair of endpoints
such that one of them is to the left and one is to the right of the line), add a horizontal line from

Function 1 Preprocessing

1: Compute connected components of blocked area.
2: Compute E .
3: For every p ∈ E , compute its visible interval.

each endpoint to the median and introduce a Steiner point on the median line, if it is obstacle-
avoiding, connect consecutive Steiner points on the median if possible, and then continue with
the sets of endpoints left and right of the line separately. We will use a similar construction here.

In order to insert median lines efficiently, we need to know which endpoints can be connected
to the median line by a horizontal segment, i.e. which endpoints can “see” the median. In the
reach-aware case, there are further complications when the median is blocked by a (small)
obstacle – even if an endpoint can see the median, the horizontal segment from the endpoint to
the median line might intersect it in a blocked point, thus we cannot introduce a Steiner point
there.

Much of the required information can be computed in preprocessing. We define the visible
interval of an endpoint p ∈ E as the maximum horizontal read-aware line through p, which is
well-defined as p is unblocked as an endpoint. This allows us to check if an endpoint can see a
median line in constant time, independently of the size of the visible interval or the number of
obstacles intersecting it.

Therefore, the steps in Function 1 are done as preprocessing using a sweepline algorithm:

In the obstacle-avoiding case, a horizontal sweepline that stores the obstacles in a binary
search tree is sufficient. The reach-aware case is more complicated; here we have two binary
search trees, one storing all blocked intervals and one only storing blocked intervals of width at
least L. This allows insertion and deletion in O(log |O|) time, as well as detecting visibility, and
makes it possible to precompute visible intervals (horizontal sweepline) and mirror points (ver-
tical sweepline) in O((|S|+ |O|) log |O|) time. This data structure, but with a vertical sweepline,
is also used for determining visibility on the median later in the algorithm, i.e. in Function 2.

At the core of the algorithm is the insert median function (Function 2), which deals with
the construction discussed in Section 2.1. The recursive insertion of median lines is implemented
from left to right, so that our sweepline can keep track of the obstacles on the median. The set
M in Function 2 represents the set of points on the current obstacle on the median that cannot
see across horizontally, i.e. the points that are relevant for the case in Figure 3(c).

The overall construction of the visibility graph is given in Algorithm 3, where in a post-
processing step vertices along a common obstacle boundary are connected.

2.3 Steiner Tree Construction

Given a visibility graph G = (V,E), we are now interested in extracting a Steiner tree. Since
G is shortest-path-preserving, any minimum terminal spanning tree routine will provide an
approximation guarantee of two. In our implementation, Steiner trees are found in O(|E| log |E|)
time using a Dijkstra-Kruskal approach from [13]. We also applied Mehlhorn’s algorithm [15],
with a faster running time of O(|E|+ |V | log |V |), but found it slower in practice.

This Steiner tree is a 2-approximation of an optimal reach-aware Steiner tree, because it is at
most as long as a reach-aware minimum spanning tree. In fact, since Steiner points on obstacles
are forbidden, is it a 2-approximation algorithm for a less restrictive version of the problem
wherein the longest path across blocked area has length ≤ L, since both problems coincide for
minimum spanning trees and our solution is feasible for both.

Algorithm 2 insert median(E)

1: Take the median xm of the x-coordinates of E .
2: insert median({(x, y) ∈ E : x < xm})
3: Introduce a median line Lm := {(xm, y) : y ∈ R}.
4: M = ∅.
5: for every p = (x, y) ∈ E in non-incr. order of y do
6: if (xm, y) is not blocked and visible from p then
7: Add new vertex (xm, y) and edge {(xm, y), p}.
8: On the median line, connect (xm, y) to the

previous one ((xm, y
′)) if existing and possible.

9: M = ∅.
10: else
11: Let [xl, xr] 3 xm be the maximum interval s.t.

the point (x′, y) is blocked for all x′ ∈ [xl, xr].
12: r := arg max{||p− p′||1 : p′ ∈ {(xl, y), (xr, y)}}.
13: q := arg min{||p− p′||1 : p′ ∈ {(xl, y), (xr, y)}}.
14: if p can see q then
15: Add q and connect p with q.
16: end if
17: if p can (also) see r then
18: Add r and connect q with r.
19: else if x = xl or x = xr is corner then
20: Connect p to all p′ ∈M with ||p− p′||1 ≤ L
21: Add p to M
22: end if
23: end if
24: end for
25: insert median({(x, y) ∈ E : x > xm})

Algorithm 3 Visibility graph construction

1: Preprocessing (Function 1).
2: Sort obstacles and initialize empty sweepline of obstacles on the median
3: insert median(E)
4: Connect points along obstacle boundaries

2.4 Running Time

In the following, n will denote the number of terminals and m will denote the number of
rectangles. For L = 0, this algorithm has a running time of O((n + m)(log(m + n))2) [5]. For
L > 0, the running time can be bounded as follows: Let k = n + m. The preprocessing in
Function 1 is done by our sweepline in O(k log k).

The insert median function is called k times; each point is in the current set E for at
most log2 k medians. Thus, the for loop in lines 5–24 of this function is executed an amortized
O(k log k) times. Every step in the for loop takes at most O(log k), except for line 20. This line
takes O(n+m), which is an upper bound on the size of M . If M has size at most l, the running
time of the visibility graph construction is bounded by O((k log k)(l + log k)).

The number of vertices of the visibility graph is bounded by O(k log k), because the number
of mirror points is linear and the number of Steiner points is O(k log k) – for each endpoint, a
constant number of Steiner points is added every time it is in the set E . The number of edges is
bounded by O(kl log k).

Constructing the Steiner tree from the visibility graph therefore takes O(kl log k(log k+log l))
time. In the worst case, with k the only upper bound on l, the algorithm has a running time of
O(k2(log k)2). However, this is rarely the case in practice (as is evident from the running times
in the next section): If the complexity of each rectilinear polygon is bounded by a constant, the
set M in insert median has constant size, hence there are O(k log k) edges and vertices in the
visibility graph and the running time is O(k(log k)2) as in the obstacle-avoiding case.

2.5 Preprocessing of Obstacles

In practice, the running time of the algorithm can be decreased significantly, especially for large
L, by preprocessing the obstacles and ignoring those that can never make our solution infeasible.
If the diameter of an isolated rectangular obstacle is bounded by L, it could be ignored and
a post-processing routine could replace non-reach-aware tree components on that obstacle by
segments of its boundary.

We propose a different approach: If half the diameter of a rectangular obstacle is at most L,
then a shortest path across this obstacle is always reach-aware. Therefore, we can ignore these
obstacles during the construction of the visibility graph, and forbid Steiner points with a degree
of more than three on obstacles during the MTST construction. This is slower in theory, but
more efficient in practice, because the visibility graph construction takes up the majority of the
running time.

The restriction that no Steiner points are allowed on obstacles does not affect the theoretical
approximation guarantee and actually yields very useful solutions for applications in buffering:
Buffers are often necessary at bifurcations to shield uncritical capacity, which is impossible if
these occur on top of an obstacle.

Using these observations, many small rectangular obstacles can be ignored for the visibility
graph construction. For sufficiently large L, constructing an `1-Steiner tree built by an obstacle-
unaware heuristic initially and checking feasibility leads to better results and running times of
our algorithm.

2.6 Post-Processing

Since the visibility graph only contains certain shortest paths, we found that a combination of
simple local search heuristics can significantly improve the result for most instances.

Especially on practical instances, we often encountered large clusters of terminals in an un-
blocked area. For those, any (obstacle-unaware) Steiner tree algorithm could be used instead.
Therefore, in post-processing, we collect maximal components of the constructed tree with un-
blocked bounding box and reconnect them using the exact FLUTE algorithm [4] for up to 9
terminals and a Prim heuristic in the Delaunay triangulation for larger terminal sets.

Furthermore, there some non-optimal local configurations, such as trunks with more branches
on one side and L-shapes that can be mirrored to decrease the length, can be found and processed
efficiently for the entire tree by changing the edge structure locally if the resulting tree is reach-
aware.

This procedure can be iterated for better results; in our experience, a good trade-off of
running time and solution quality is achieved by one iteration for chip instances and three
iterations for benchmark instances.

2.7 Multiple Nets

In chip design, there is usually a persistent set of obstacles, but thousands or millions of nets.
Many nets consist of only two or three terminals and it would be too time-consuming to compute

the visibility graph from scratch for each net. Therefore, we proceed as follows when processing
all nets of a chip: Some preprocessing steps are independent of the terminal set and can be
precomputed for all nets. Using this information, we construct an obstacle visibility graph, i.e. a
visibility graph for an empty set of terminals. This obstacle graph can be extended to a visibility
graph for a given set of terminals by inserting a new median line through every terminal and
connecting all obstacle endpoints and other terminals to this line (if possible). This preserves
the visibility graph invariant of having a median line between each pair of endpoints with empty
bounding box containing an `1-shortest path between them.

This construction is most useful if a net has few terminals and L is small. In our experience,
the number of terminals for which this construction is applied should be less than logarithmic
in the number of obstacles and linear (with a very small slope) in L.

3 Experimental Results

We carried out experiments on standard benchmarks from the literature for the obstacle-avoiding
Steiner tree problem, as well as some very big industrial instances. Furthermore, for three in-
dustrial chips we computed Steiner trees for all existing nets. All tests were carried out on an
Intel R© Xeon R© CPU X5690 @ 3.47GHz, 192 GB RAM with 12 cores.

3.1 Standard Benchmarks

The standard benchmarks are composed as follows. RC01-RC12 are randomly generated in-
stances by Feng et. al. [6], IND1-IND5 are industrial test cases by Synopsys, RT01-RT05 have
a fixed ratio of terminals to obstacles of 5, 10 and 50 and were introduced by Lin et. al. [12],
and RL01-RL05 are large random instances by Long et. al. [14].

Table 3 shows the lengths of reach-aware Steiner trees found by our algorithm for different
values of L, relative to the length of the longer side of the bounding box of the instance including
obstacle corners. In most of these benchmarks, no obstacle has both width and height exceeding
10% of the size of the bounding box.

For these instances, the obstacles are given as a set of rectangles whose union represents
the blocked area. Here, Opt∗ denotes the optimum solution (if known) for the obstacle-avoiding
Steiner tree problem according to Huang and Young [10]. We added them as a reference value,
but recall that they have a slightly different definition of obstacle-avoiding. Edges between two
rectangles that share a boundary may be used, whereas with our definition, they would pass
through the interior of the blocked area and not be obstacle-avoiding.

Thus, their Steiner trees can be strictly shorter than the optimum according to our definition
for any L <∞. For some of the larger instances (marked by ≤), the optimum solution is actually
unknown; here we present the best value from literature [1, 11]. For two instances, we improve
on the best known value from literature for L = 0 despite our stricter definition.

With our definition, IND5 becomes infeasible for small L (≤ 1% of bounding box), as seen in
Figure 6 – there is a vertex isolated by a ring of obstacles in the upper right corner. The picture
shows our solution for L = 10% of the instance width, i.e. the difference of the maximum and
minimum x-coordinates in the input.

Except for the RL instances, one can see that the tree length gradually decreases with
increasing value of L. The RL instances have many terminals that are spread uniformly across the
unblocked area. For such instances, the obstacles do not affect the length of a minimum Steiner
tree significantly and the length variation is dominated by the Steiner tree approximation. For
L = 0, our results on three of the RL instances are better than the best previous upper bounds.

Fig. 6. Our solution for IND5 with L = 10% instance width.

The reported running times are generally fast. For some instances, the running time first
increases and then decreases with growing L. The reason is that we first add more and more edges
reaching over obstacles, thereby increasing the size of the visibility graph. Later, increasingly
many obstacles can be pruned according to Section 2.5 and the running time decreases. This
effect will become even more evident when routing all nets on a chip in Section 3.3.

3.2 Big Chip Instances

Eight industrial test instances arise from a cooperation with IBM. They have between 109 and
783 352 terminals. The bigger ones represent reset trees with low performance requirements,
where short length is a major focus. These instances are published as the “BONN” instances as
part of the 11th DIMACS benchmark suite on Steiner trees:

http://dimacs11.cs.princeton.edu/instances.

Instance |S| |O| L? Length RT
L = 0 L = L? L =∞ sec.

BIG1 109 101 90 31695 31566 28485 ¡1
BIG2 23292 54 2400000 364338561 363004401 361726146 1
BIG3 35574 158 1500000 746523861 746495841 735059181 2
BIG4 46269 127 1500000 1071883920 1071827520 1068448860 4
BIG5 108500 141 4200000 1973406390 1964154690 1957120800 10
BIG6 129399 210 1500000 infeasible 2608227090 2616871950 14
BIG7 639639 382 4200000 3060914728 3028456768 3013106038 99
BIG8 783352 175 1200000 1948056132 1944546732 1931964162 126

Table 1. Results for the BIG instances.

Table 1 shows results for eight real-world instances. The first three columns show the number
of terminals, the number of rectangular obstacles, and the reach-length L?, which depends on the
technology and the metal stack of the underlying chip. We then report the lengths for obstacle-
avoiding trees (L = 0), for the given reach-length L? and for ignoring all obstacles (L = ∞).
Again, one can observe that the lengths gradually decrease with growing L, even though large
parts of the length are incurred by unblocked clusters of terminals.

The running times (given for L = L?) demonstrate that our algorithm is capable of handling
even largest instances efficiently.

Figure 7 shows a plot of BIG5 for L = L?. The reach-length does not allow to pass over the
biggest obstacles, but some wires cross smaller obstacles in the center of the chip.

(a) AndreTop, 3 899 379 nets

L Length #inf. CPU Wall

0 562 032 0 11:23 05:45
0.5 535 453 0 21:47 07:21
1 469 175 0 15:22 06:21
2.5 440 680 0 10:17 05:54
∞ 440 537 0 08:18 05:12

(b) AlexTop, 2 674 754 nets

L Length #inf. CPU Wall

0 580 318? 1 955 21:58 06:10
0.5 536 358? 1 24:52 06:29
1 532 307 0 21:46 06:06
2.5 530 284 0 17:58 05:55
∞ 529 301 0 07:07 04:38

(c) LeonardTop, 525 498 nets

L Length #inf. CPU Wall

0 201 127? 6 669 13:33 02:42
0.5 249 067? 40 16:54 03:11
1 246 862 0 17:41 03:24
2.5 203 378 0 11:31 02:32
∞ 199 216 0 01:52 01:24

Choices of L and total net lengths are reported in mm, running times in mm:ss using 8 threads. Total
lengths marked by ? include infeasible nets with (large) opens!

Table 2. Results on entire chips.

Fig. 7. Industrial instance with 108500 terminals.

3.3 Computations for Entire Chips

The benefit of allowing components to reach over obstacles becomes very evident when comput-
ing reach-aware Steiner trees for all nets on a chip. We tested our algorithm on three chips in
65nm technology, also provided by IBM.

Table 2 shows the total net lengths for L = 0, L = 0.5mm, L = 1mm, L = 2.5mm and
L = ∞. For small L, some nets are infeasible. For those nets, the solution consists of a reach-
aware forest with minimum number of components and only the length of this forest is included
in the total length. Therefore, on LeonardTop the total net length for L = 0 is lower than for
larger reach-lengths, where all nets become feasible. The number of infeasible nets is listed in
the “#inf.”-columns.

Compared to obstacle-avoiding trees, the reduction in total net length is substantial, e.g.
2.5%, 14.8%, 19.8% and 20% on AndreTop or 8.7%, 9.5%, 9.8% and 10% on AlexTop, here even
in presence of infeasible nets for L = 0.

LeonardTop contains 26 macros with width and height above 2mm. Thus, a significant
length reduction only occurs when raising L to 2.5mm.

Again, the running times first rise with growing L, because the size of the visibility graph
increases, and then fall due to the pruning of obstacles. The wall times were obtained using 8
threads.

4 Conclusion

We have proposed a new algorithm for computing reach-aware Steiner trees that is fast in theory
and on real-world instances from chip design. It provides a 2-approximation for minimum reach-

Name |S| |O| Opt∗ Lengths Running times in seconds
L = 0 1% 5% 10% ∞ L = 0 1% 5% 10% ∞

RL01 5000 5000 ≤ 481813 493372 486836 490658 491565 472780 0.65 1.02 0.26 0.28 0.13
RL02 9999 500 ≤ 637753 638206 638151 638276 638612 634187 0.66 0.68 0.66 0.65 0.25
RL03 9999 100 ≤ 640902 639495 639314 639195 638851 636566 0.72 0.73 0.73 0.72 0.25
RL04 10000 10 ≤ 697125 694654 694654 691612 691612 691660 0.76 0.76 0.27 0.27 0.24
RL05 10000 0 ≤ 728438 723102 723102 723102 723102 723102 0.27 0.26 0.26 0.26 0.24

RC01 10 10 25980 27360 27360 25290 25290 25290 0.00 0.00 0.00 0.01 0.00
RC02 30 10 41350 43010 43010 42540 41460 41330 0.00 0.00 0.00 0.01 0.00
RC03 50 10 54160 55080 55080 54650 55660 52470 0.01 0.00 0.00 0.00 0.00
RC04 70 10 59070 60300 60300 57410 56120 55330 0.00 0.01 0.00 0.00 0.00
RC05 100 10 74070 75060 75060 73330 73460 71610 0.01 0.00 0.00 0.01 0.00
RC06 100 500 79714 85133 84200 81983 82145 77472 0.03 0.03 0.01 0.01 0.01
RC07 200 500 108740 114225 112168 111249 110343 107190 0.03 0.03 0.03 0.01 0.00
RC08 200 800 112564 120394 116649 113778 115090 109589 0.05 0.05 0.03 0.02 0.00
RC09 200 1000 111005 118116 115169 112665 113571 107561 0.07 0.06 0.02 0.03 0.01
RC10 500 100 164150 168350 168350 166910 166330 164600 0.03 0.02 0.03 0.02 0.00
RC11 1000 100 230873 235424 234930 234827 235407 230620 0.06 0.06 0.06 0.05 0.01
RC12 1000 10000 ≤ 756998 792417 785857 785857 785857 754414 0.82 0.11 0.11 0.11 0.08

RT01 10 500 2146 2283 2012 1817 1817 1817 0.01 0.03 0.00 0.01 0.01
RT02 50 500 45852 49500 46762 45772 45772 45747 0.02 0.03 0.00 0.01 0.00
RT03 100 500 7964 8380 8034 8092 8046 7697 0.03 0.03 0.01 0.01 0.01
RT04 100 1000 9693 10616 8160 7788 7788 7788 0.05 0.07 0.01 0.02 0.02
RT05 200 2000 51313 55507 45479 45581 46101 43099 0.12 0.15 0.06 0.04 0.02

IND1 10 32 604 629 629 609 609 609 0.01 0.00 0.00 0.00 0.00
IND2 10 43 9500 10600 10600 9100 9100 9100 0.00 0.00 0.01 0.00 0.00
IND3 10 50 600 678 678 600 587 587 0.00 0.00 0.00 0.00 0.00
IND4 25 79 1086 1160 1160 1137 1121 1092 0.01 0.00 0.00 0.00 0.01
IND5 33 71 1341 infeas. infeas. 1364 1343 1312 0.00 0.00 0.00 0.01 0.00

Sum 3.62 4.13 2.56 2.56 1.29

Opt∗ denotes the optimum solution for L = 0 from [10] w.r.t. a slightly more relaxed interpretation of
obstacles. Running times of 0.00 were positive but less than 0.01 seconds.

Table 3. Solution length and running times for different choices of L.

aware Steiner trees and is, in contrast to existing 2-approximation algorithms [16], fast enough
for practical computations.

The computational results, in particular on entire chips, demonstrate the big length re-
ductions compared to obstacle-avoiding Steiner trees for the purpose of computing short and
reach-aware buffer tree topologies.

References

1. G. Ajwani, C. Chu and W.-K. Mak. FOARS: FLUTE Based Obstacle-Avoiding Rectilinear Steiner
Tree Construction, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 30 (2011), 194–204.

2. C. J. Alpert, A. B. Kahng, C. N. Sze and Q. Wang. Timing-driven Steiner trees are (practically)
free, Proceedings of the Design Automation Conference (2006), 389–392.

3. C. Bartoschek, S. Held, J. Maberg, D. Rautenbach and J. Vygen. The repeater tree construction
problem, Information Processing Letters 110 (2010), 1079–1083.

4. C. Chu and Y.-C. Wong. FLUTE: Fast Lookup Table Based Rectilinear Steiner Minimal Tree Algo-
rithm for VLSI Design, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 27 (2008), 70–83.

5. K. Clarkson, S. Kapoor and P. Vaidya. Rectilinear shortest paths through polygonal obstacles in
O(n(logn)2) time, Proceedings of the Symposium on Computational Geometry (1987), 251–257.

6. Z. Feng, Y. Hu, T. Jing, X. Hong, X. Hu and G. Yan. An O(n logn) algorithm for obstacle-avoiding
routing tree construction in the λ-geometry plane, Proceedings of the International Symposium on
Physical Design (2006), 48–55.

7. J. L. Ganley and J. P. Cohoon. Routing a multi-terminal critical net: Steiner tree construction in the
presence of obstacles, Proceedings of the IEEE International Symposium on Circuits and Systems
vol.1 (1994), 113–116.

8. S. Held and D. Rotter. Shallow Light Steiner Arborescences with Vertex Delays, Proceedings of the
International Conference on Integer Programming and Combinatorial Optimization (2013), 229–
241.

9. T. Huang and E. F. Y. Young. Construction of rectilinear Steiner minimum trees with slew con-
straints over obstacles, Proceedings of the International Conference on Computer-Aided Design
(2012), 144–151.

10. T. Huang and E. F. Y. Young. ObSteiner: An Exact Algorithm for the Construction of Rectilinear
Steiner Minimum Trees in the Presence of Complex Rectilinear Obstacles, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 32 (2013), 882–893.

11. L. Li and E. F. Y. Young. Obstacle-avoiding Rectilinear Steiner Tree Construction, Proceedings of
the International Conference on Computer-Aided Design (2008), 523–528.

12. C.-W. Lin, S. Y. Chen, C.-F. Li, Y.-W. Chang and C.-L. Yang. Obstacle-Avoiding Rectilinear Steiner
Tree Construction Based on Spanning Graphs, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 27 (2008), 643–653.

13. C.-H. Liu, S.-Y. Yuan, S.-Y. Kuo and S.-C. Wang. High-performance obstacle-avoiding rectilinear
Steiner tree construction ACM Transactions on Design Automation of Electronic Systems 14 (2009),
article 45.

14. J. Long, H. Zhou and S. O. Memik. An O(n logn) edge-based algorithm for obstacle-avoiding rec-
tilinear Steiner tree construction, Proceedings of the International Symposium on Physical Design
(2008), 126–133.

15. K. Mehlhorn. A faster approximation algorithm for the Steiner problem in graphs, Information
Processing Letters 27 (1988), 125–128.

16. M. Müller-Hannemann and S. Peyer. Approximation of Rectilinear Steiner Trees with Length Re-
strictions on Obstacles, Proceedings of the Workshop on Algorithms and Data Structures (2003),
LNCS 2748, 207–218.

17. Y. Zhang, A. Chakraborty, S. Chowdhury and D. Z. Pan. Reclaiming over-the-IP-block routing re-
sources with buffering-aware rectilinear Steiner minimum tree construction. Computer-Aided Design
(ICCAD), 2012 IEEE/ACM International Conference on, pp. 137-143. IEEE, 2012.

