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Abstract. The GeoSteiner software package has for more than 10 years
been the fastest (publicly available) program for computing exact solu-
tions to Steiner tree problems in the plane. The computational study
by Warme, Winter and Zachariasen, published in 2000, documented the
performance of the GeoSteiner approach — allowing the exact solution of
Steiner tree problems with more than a thousand terminals. Since then,
a number of algorithmic enhancements have improved the performance
of the software package significantly. In this computational study we run
the current code on the largest problem instances from the 2000-study,
and on a number of larger problem instances. The computational study
is performed using the commercial GeoSteiner 4.0 code base, and the
performance is compared to the publicly available GeoSteiner 3.1 code
base as well as the code base from the 2000-study.

Keywords: Euclidean Steiner tree problem, rectilinear Steiner tree problem,
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1 Introduction

The Steiner tree problem in the plane asks for a shortest possible interconnection
of a set of points under some given metric. The Euclidean and rectilinear Steiner
tree problems in the plane are by far the most studied geometric Steiner tree
problem variants [11, 12, 14]. Recently, the uniform and fixed orientation metrics
have also received some attention due to applications in the physical design of
integrated circuits [4, 5, 25]. A uniform orientation metric is given by a set of
λ ≥ 2 uniformly distributed orientations in the plane, and the goal is to compute
a shortest possible interconnections where all line segments have one of the given
orientations. The rectilinear metric is a uniform orientation metric with two legal



II

orientations, namely the horizontal and vertical orientations. The Steiner tree
problem in the plane is NP-hard for all interesting metrics [6, 9, 10]. For a
comprehensive introduction to these problems, see the upcoming book by Brazil
and Zachariasen [7].

Background and Motivation. Since the publication of the computational
study by Warme, Winter and Zachariasen [24] in 2000, the GeoSteiner software
package — released in 2001 — has been the fastest (publicly available) pro-
gram for computing exact solutions to Steiner tree problems in the plane. The
GeoSteiner approach has successfully been extended to uniform orientation met-
rics [19], to Euclidean and rectilinear problems with obstacles [13, 30], and to
rectilinear group interconnection problems [28].

The computational effectiveness of the GeoSteiner approach is largely due to
the fact that a minimum Steiner tree in the plane can be decomposed into small
so-called full Steiner trees (FSTs); these are subtrees where Steiner points are
interior vertices and terminals are leaves [24]. The GeoSteiner algorithm has two
phases: FST generation and FST concatenation. In the first phase, all FSTs that
can possibly appear in a minimum Steiner tree are enumerated. In the second
phase, a subset of the generated FSTs is chosen such that they form a minimum
Steiner tree. The first phase is obviously very metric dependent, while the second
phase is purely combinatorial (and metric independent).

Since the publication of the 2000-paper [24], a number of (unpublished) al-
gorithmic enhancements have improved the performance of the software package
significantly. Some of these enhancements were part of the 2001 public release,
while other have been added in later versions. These algorithmic engineering
efforts cover the use of faster data structures, new heuristics for better pruning
of FSTs, and better cutting methods in the branch-and-cut concatenation algo-
rithm. The motivation of the current paper is to describe these improvements
and document their effects, both for the publicly available GeoSteiner 3.1 code
base and the commercial GeoSteiner 4.0 code base.

Our Contribution. We present an updated computational study on Steiner
tree problems in the plane. Also, we document the main algorithmic enhance-
ments made to the GeoSteiner software package. In the updated computational
study we run the current code on the largest problem instances from the 2000-
study, and on a number of even larger problem instances. The computational
study is performed using the commercial GeoSteiner 4.0 code base, and the per-
formance is compared to the publicly available GeoSteiner 3.1 code base as well
as the code base from the 2000-study.

As a general rule, the FST generation phase has a more predictive running
time than the FST concatenation phase. As a consequence, the FST concatena-
tion phase is usually the bottleneck when solving large-scale problem instances.
The FST concatenation problem can either be solved as a minimum spanning
tree problem in a hypergraph (as in the 2000-paper), or as a Steiner tree prob-
lem in an ordinary graph. The latter approach was studied and experimentally
evaluated by Polzin and Vahdati Daneshmand [20] in 2003, and it appeared
to have superior performance when compared the FST concatenation code of
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GeoSteiner 3.1. However, the software used in [20] is not publicly available; in
fact, no software for solving the Steiner tree problem in graphs is — to the best
of our knowledge — publicly available, so we have restricted our experiments to
solving the FST concatenation problem as a minimum spanning tree problem
in a hypergraph. However, we are planning to make the output from the FST
generation available as instances of the Steiner tree problem in graphs, so other
researchers can solve the FST concatenation problems using their own code.

Organisation of the Paper. In Section 2 we give a brief introduction to
the GeoSteiner approach. A presentation of the major algorithmic enhancements
made since the publication of the 2000-paper are given in Section 3. Computa-
tional results are presented in Section 4, and concluding remarks are given in
Section 5.

2 GeoSteiner Approach

Let N be a finite set of points, or so-called terminals, in the plane, and assume
that some metric is given. A naive algorithm for computing a minimum Steiner
tree for N under the given metric is to enumerate all full Steiner topologies for
every subset of terminals, and then compute an FST for the given topology, or to
decide that no such tree exists [7, 15]. A minimum Steiner tree is then obtained by
identifying a subset among the constructed FSTs that interconnects N and has
minimum length. However, since the number of terminal subsets is exponential
in the size of N — and the number of full Steiner topologies for each subset is
super-exponential — this algorithm would show very bad scaling.

GeoSteiner follows the same two-phase approach as the naive algorithm, but
reduces the work significantly by implicit instead of explicit enumeration of FSTs
(for all subsets and all full Steiner topologies). Groups of FSTs that do not fulfill
necessary structural properties are eliminated early — and in most cases without
direct geometric construction.

2.1 FST Generation

The task of the FST generation phase is to determine an as small as possible
superset of FSTs of a minimum Steiner tree. Consider some FST T spanning a
subset of k terminals in N , where 3 ≤ k ≤ |N |. We can assume that the Steiner
points in T have degree 3. Steiner points with degree 4 or more can only appear
under certain metrics, and in these cases they can be assumed to appear in FSTs
that are easily identified [5]. The FST T therefore has k terminals as leaf nodes
(with degree 1) and k − 2 Steiner points as interior nodes (with degree 3).

For the Euclidean metric the edges in T — which interconnect terminals
and/or Steiner points — are straight line segments, and the edges at a Steiner
point in T meet at 120◦ angles. For the rectilinear metric, and more generally for
any fixed orientation metric, the edges of T can also be assumed to be straight
edges, except possibly one so-called bent edge pq, which interconnects nodes p
and q using exactly two straight line segments that meet at a corner point [5].
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FST generation in GeoSteiner is performed by enumerating so-called branch
trees. Consider FST T . If T has a bent edge pq, then let c be the corner point
of pq; otherwise let c the midpoint of any (straight) edge pq in T . Imagine that
we cut edge pq at point c. We obtain two branch trees: B1 rooted at p having
a stem (or ray) leaving p along pc, and B2 rooted at q having a stem leaving q
along qc (Figure 1). Note that all edges in a branch tree are straight edges.
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Fig. 1. An FST T spanning five terminals t1, . . . , t5 with a bent edge pq. T can be
obtained by joining two branch trees B1 and B2 with roots p and q, respectively. The
arrows indicate the paths from the terminals to the root of each branch tree. Branch
tree B1 is obtained by joining branch trees for terminals t1 and t2. Branch tree B2 is
obtained by joining a branch tree for terminal t3 with a branch tree having root s that
spans terminals t4 and t5. The example is given for a fixed orientation metric.

Intuitively, we can think of a branch tree as an FST spanning a set of termi-
nals and a single point at infinity. We define the size of a branch tree to be the
number of terminals spanned by the branch tree. A branch tree of size 1 consists
of a single terminal with a stem; such a branch tree has no Steiner points and
the terminal is the root of the branch tree. A branch tree of size k ≥ 2 has k
terminals and k − 1 Steiner points, and can naturally be represented as a bi-
nary tree. Branch trees for the Euclidean problem are represented by equilateral
points, and the root of a branch tree can be located anywhere on a so-called
Steiner arc [26].

The generation phase of GeoSteiner enumerates branch trees of increasing
size — essentially using a dynamic programming approach. Branch trees of size
k are obtained by joining branch trees of size l with branch trees of size k − l,
where l runs from 1 to bk/2c. An FST is obtained by identifying two branch trees
where the stems can be made to overlap in opposite directions (for the Euclidean
metric) or intersect at an appropriate angle (for fixed orientation metrics).
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Branch trees and FSTs are eliminated from consideration by performing a
number of pruning tests. These tests are metric dependent, but are based on
similar structural properties such as empty regions and upper bounds on edge
lengths in a FST [19, 26, 27]. A simple upper bound on the length of any edge in
a minimum Steiner tree for N is to take the longest edge in a minimum spanning
tree for N [26]; in the following we let bmax denote this upper bound for a given
set of terminals N .

2.2 FST Concatenation

The FST concatenation problem can be modelled as an instance of the minimum
spanning tree in hypergraph (MSTHG) problem: given a hypergraph H = (V,E),
and a weight function w : E 7→ R, find a subset T ⊆ E such that T is a
spanning tree of H that minimizes w(T) =

∑
e∈T w(e). FST concatenation

instantiates V as the set of terminals N , E as the set of all FSTs (each FST is
a hyperedge connecting 2 or more vertices in the hypergraph), and w(e) as the
geometric length of FST e using the appropriate distance metric. Note that even
deciding the existence (or not) of a spanning tree within a general hypergraph is
NP-complete [23], so FST concatenation is in general an NP-hard optimization
problem.

The MSTHG problem is solved using the following integer program (IP):

Minimize
∑
e∈E

cexe

Subject to ∑
e∈E

(|e| − 1)xe = |V | − 1, (1)∑
e∈E

max(|e ∩ S| − 1, 0)xe ≤ |S| − 1, ∀S ⊂ V, |S| ≥ 2 (2)

0 ≤ xe ≤ 1, ∀e ∈ E (3)

xe ∈ Z, ∀e ∈ E (4)

where c ∈ R|E| is the cost vector such that ce = w(e) for all e ∈ E, and x ∈ R|E|
is the solution vector. The following two theorems were proved by Warme [23]:

Theorem 1. Let T ⊆ E be any spanning tree of H = (V,E). Let x̃ ∈ R|E| such
that x̃e = 1 if e ∈ T and x̃e = 0 otherwise (x̃ is the incidence vector of T).
Then x̃ is an integer feasible solution to IP.

Theorem 2. Let x̃ be any feasible integer solution to IP. Let T = {e ∈ E :
xe = 1}, so that x̃ is the incidence vector of T. Then T is a spanning tree of H.

The LP relaxation of IP is obtained by removing constraint (4). This re-
laxation produces very tight lower bounds in practice. Integrality is recovered
via branch-and-bound upon fractional variables of the LP relaxation. Note that
there are exponentially many constraints (2). These constraints are added to the
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formulation dynamically as violations are discovered. This separation problem
can be solved in polynomial time by reduction to flows using the techniques
described in [23].

3 Algorithmic Enhancements

The 2000-paper [24] combined the Euclidean FST generation algorithm from [26],
the rectilinear FST generation algorithm from [27], and the branch-and-cut based
FST concatenation algorithm described in [23]. All generated FSTs were consid-
ered in the branch-and-cut algorithm. No FST pruning (or hypergraph reduc-
tion) was used, and the algorithms were not integrated at that time.

The GeoSteiner implementation has improved considerably since the publi-
cation of [24], rendering those results obsolete. The following table summarizes
the major versions of GeoSteiner, their release dates, and major feature im-
provements, and the section numbers refer to sections below that describe these
features in more detail. GeoSteiner 4.0 is currently a proprietary product (not
open source)

Version Date Major New Features and Improvements Section
[24] March

1998
3.0 January New implementation of FST generators 3.1

1999 No compiled-in limits on problem size
Save/restore LP basis when switching nodes
Handle abstract hypergraph problems

3.1 February New greedy Euclidean heuristic 3.2
2001 Numeric stability improvements 3.3

FST pruning added 3.4
Improved variable fixing in branch-and-cut 3.5
Improved strong branching heuristics 3.6

4.0 February Callable library 3.7
2006 New bottleneck Steiner distance data structure 3.8

Uniform orientations FST generator 3.9
Cut generation improvements 3.10
Local cuts 3.11

3.1 New FST Generator Implementations

The original Euclidean and rectilinear FST generators were implemented in C++
using LEDA [17, 18]. These were replaced with new highly tuned implementa-
tions written in C. Both of the new FST generators replaced the LEDA and
other data structures with more efficient, low-level data structures that are cus-
tomized to provide only the necessary operations, and are much more friendly to
modern cache hierarchies and deeply pipelined CPU architectures. They also use
a much better hash table and linear time check for duplicate FSTs (the shortest
is retained).
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Improvements to the Euclidean FST Generator. The new Euclidean FST
generator uses a range search idea originally suggested by Althaus [1] to identify
relevant pairwise branch trees as follows. Let bmax be the length of the longest
edge in a minimum spanning tree for N — which is the same as the maximum
bottleneck Steiner distance (see Section 3.8). Then no edge in any minimum
Steiner tree for N can be longer than bmax. Consider two branch trees B1 and
B2. Let γ be the distance between the roots of B1 and B2 (see Section 2.1);
if B1 and B2 are terminals, γ is simply the distance between these terminals.
Clearly, if γ > 2bmax then no feasible combination of B1 and B2 exists, since
at least one of the new edges would have a length greater than bmax. Thus,
given a branch tree B1, we can use a range search data structure to identify
all branch trees that are within distance 2bmax of B1 (where distance is defined
as above). A simple bucket structure was used as data structure: the minimum
rectangle containing the set of terminals N is divided into K×K subrectangles.
One bucket structure was constructed for each size of branch trees, allowing
fast identification of branch trees of appropriate size. This method significantly
improves the running time for large problem instances, especially those with a
uniform distribution of the terminals.

In addition, many uses of trigonometric functions were replaced with vec-
tor operations (e.g., dot and cross product), and more efficient data structures
were implemented for representing the terminals spanned by branch trees (or
equilateral points).

Improvements to the rectilinear FST Generator. The so-called empty
rectangles matrix was reorganized as a lower-triangular bit matrix to reduce its
size and improve locality (see [27] for details). In addition, several crucial low-
level geometric primitives (macros) were replaced with new implementations that
use no conditional branches. By reducing pipeline flushes, these macro changes
produced about a 3-fold additional speed improvement on top of all the other
improvements.

3.2 New Greedy Euclidean Steiner Tree Heuristic

The Zachariasen-Winter greedy heuristic for Euclidean Steiner trees [29] was
added as an alternative to the existing Smith-Lee-Liebman heuristic [22].

3.3 Numerical Stability Improvements to Euclidean FST Generator

Several rounds of changes were made to improve the numerical stability of the
Euclidean FST generator. First, dynamically computed (relative) tolerances were
used for all floating-point comparisons. Behavior for point sets located away from
the origin was improved by translating the entire point set to a new origin com-
puted to be both “central” to the point set and to have relatively few significant
bits. Next, all computations for a single equilateral point were performed with
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respect to an origin located at one of its terminals, thereby increasing the num-
ber of significant bits available for these computations. All movement of Steiner
arc endpoints are encapsulated into new routines that are much more careful
to make sure that the arc is never shortened any more than can be justified
numerically.

Finally, the code was modified to use the GNU multi-precision arithmetic
package (GMP) under control of a Level switch, which defaults to level 0. At
Levels 1 and 2, GMP exact rational arithmetic is used to compute: (1) the exact
coordinates (in Q(

√
3)) of each equilateral point; (2) the closest double-precision

representation of each equilateral point’s coordinates; and (3) the closest double-

precision representation of the length of each FST (in
√

Q(
√

3)). Conversion of

Q(
√

3) into numeric form is accomplished using a Newton iteration, with initial
approximation computed via floating-point. At Level 1, a single high-precision
Newton iteration is used to refine this value before converting to the nearest
double-precision representation. At Level 2, Newton iterations are continued
until a formal convergence test has verified that the value is correct to at least 1/2
ULP of double-precision. These computations are performed only on equilateral
points and FSTs that have passed all screening tests, as a part of storing them
in their final form. This prevents floating-point errors from accumulating as
equilateral points are recursively constructed from smaller equilateral points.
This in turn permits more conventional relative numeric tolerancing techniques
to be used in a sound manner in the more intensively traversed portions of the
code. On large random instances, GMP Level 2 adds only about 1–2% to the
run time, but significantly improves the numerical accuracy and stability of the
generated FSTs.

3.4 New FST Pruning

The FST pruning algorithm of Fößmeier and Kaufmann [8] was implemented
for all metrics. (The previous pruning codes were slow, relatively ineffective, and
completely specific to either the Euclidean or rectilinear metric [21, 26].) The
idea of the Fößmeier and Kaufmann pruning algorithm is to test whether an
FST F must be part of a larger full component in a minimum Steiner tree. More
specifically, the pruning algorithm searches for an FST F and a terminal t with
the following properties:

1. Terminal t is not spanned by F , and has (minimum) distance γ to some edge
(p, q) in F .

2. The longest edge on every path P from t to p, or from t to q, is longer than
γ (where the edges of P come from the set of generated FSTs).

Assuming that F appears in a minimum Steiner tree leads to a contradiction,
since we can add a connection of length γ from t to (p, q), and remove an edge
of length more than γ on the cycle that is created. Therefore a shorter tree can
be constructed, and F can be eliminated from consideration.
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Efficient implementation of this pruning algorithm requires significant care,
but the method is very powerful in practice and typically removes at least half of
the generated FSTs. Here we give some of the most important implementation
details:

1. First the so-called pruning graph GP = (VP , EP ) is computed. The vertex
set VP consists of the terminals N and the Steiner points in all generated
FSTs. The edge set EP consists of the edges of all generated FSTs. The
edge set is sorted by non-decreasing length (under the given metric), and
necessary information is attached to the edge set such that a sorted list of
edges efficiently can be generated for any given subset of FSTs.

2. For each FST T the list of compatible FSTs is generated. These are FSTs
that can appear together with T in some minimum Steiner tree. Consider
some FST T ′ 6= T . If T ′ has two or more terminals in common with T ,
then T ′ is not compatible with T . Consider the case where T ′ has a single
terminal in common with T . If a shorter tree interconnecting the terminals
spanned by T and T ′ can be constructed, then T ′ is not compatible with T ;
first simple heuristics and finally an exact algorithm based on the FSTs al-
ready generated is used for constructing a tree interconnecting the terminals
spanned by T and T ′.

3. For each FST T the set of terminals that are within distance bmax to T are
identified (see Section 2.1). The distance from a terminal t to an edge (p, q)
in T is computed as the difference in length between a minimum Steiner tree
for t, p and q, and the length of edge (p, q), that is, the increase in length
that is needed to insert t on edge (p, q). The list of terminals is sorted by
their minimum distance to T (shortest distance first).

4. When attempting to prune an FST T , the sorted list of close terminals is
traversed. Consider a terminal t having distance γ to some edge (p, q) in T .
A (forest) graph GT = (VT , ET ) with vertex set VT = VP is constructed; the
edge set ET is formed by using Kruskal’s minimum spanning tree algorithm
on the sorted edge set EP — but only including edges from FSTs that are
compatible with T . As soon as an edge of length γ or more is reached,
Kruskal’s algorithm stops. Now, if t and p, as well as t and q, are in different
connected components in GT , then T can be pruned. Note that the graph
GT has to be built only once for the sorted list of close terminals to T .

Clearly, as FSTs are pruned, the list of compatible FSTs for each remaining
FST must be recomputed. This is done at appropriate intervals in order to save
running time.

In addition to pruning FSTs, FSTs that are required to be part of any min-
imum Steiner tree can be identified. If a terminal t only is spanned by a single
remaining FST T , then T must be part of any minimum Steiner tree. More gener-
ally, if a connected component of required FSTs has a single adjacent FST, then
this FST is required. Finally, any FST that is not compatible with a required
FST can be pruned.
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3.5 Improved Variable Fixing in Branch-and-Cut

Variable fixing in the branch-and-cut algorithm for solving the FST concate-
nation problem was improved (see Section 2.2). Let Z be the current optimal
LP objective value for a node, de be the reduced costs for edge e, and U be
the best upper-bound available. Previous variable fixing was activated when a
non-basic edge variable xe satisfied Z + |de| > U + ε, with small ε > 0. The
new implementation maintains new vectors Zlb0 and Zlb1. Element e of these
vectors stores the highest value of Z + |de| ever seen while xe is non-basic at 0
(or 1), respectively, and represent lower bounds on the objective value obtained
by forcing xe = 0 (or xe = 1), respectively. This allows variables to be fixed even
when the instantaneous value of Z + |de| is not sufficiently high to produce a
cutoff. The quantities Zlb0 and Zlb1 are also used in the branch variable selection
methods, as discussed below.

3.6 Improved Strong Branching Heuristics

A new heuristic ranking of branch variable candidates in the branch-and-cut
algorithm for the FST concatenation problem was introduced. Each node main-
tains a vector bheur. Element bheure indicates how much the corresponding
value of xe has been changing in recent iterations. We set bheur = 0 initially.
Let x be the current LP solution, x′ be the previous LP solution, and bheur′ be
the previous bheur. Then

bheur = 0.75 bheur′ + |x − x′|.

For each fractional branch variable candidate xj , we compute a closest rational
approximation Nj/Dj , and then

rankj = bheurj ((Dj − 1) + |Nj − Dj/2|).

Candidate branch variables are sorted into increasing order by ranke. Strong
branch testing is performed in that order. This favors variables that have been
“stuck” at “simple fractional values” (e.g., 1/2, 3/4, etc.) for several iterations.
We test variables in this order until either: (1) one or more variables are fixed;
(2) a cutoff is obtained; (3) all candidates are tested; or (4) when K consecu-
tive variables have been tested without finding an improving candidate, where
K = 2blog2(NumFrac)c, where NumFrac is the number of fractional branch
variable candidates.

Finally, improvements were made to the interplay between the primal upper
bound heuristic, variable fixing, and branch variable testing. The primal upper
bound heuristic is applied to every LP solution obtained while testing branch
variables. New upper bounds discovered in this way provide opportunities for
additional variable fixing. Any branch variable candidate that gets fixed in this
manner while testing the candidates causes branch variable selection to abort,
allowing cut generation to resume at the current node in lieu of branching.
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3.7 Callable Library

In GeoSteiner 4.0, the code was completely restructured and re-factored to en-
capsulate the algorithms as a subroutine library, allowing GeoSteiner 4.0 to be
much more easily used as a “black box” within other applications.

3.8 New Bottleneck Steiner Distance Data Structure

Consider a minimum spanning tree T for N . The bottleneck Steiner distance
between two terminals t1, t2 ∈ N is the length of the longest edge on the path
between t1 and t2 in T . Bottleneck Steiner distances between every pair of ter-
minals can trivially be determined in O(n2) time by doing a depth-first traversal
in T from every terminal. This gives constant-time lookup of bottleneck Steiner
distances, but requires Θ(n2) space. For large problem instances, it is more ef-
ficient to use the data structure suggested in [16] which uses Θ(n) space; the
preprocessing time is O(n log n), and queries can be made in O(log n) time. The
FST generator was set to use this Θ(n) space data structure when the number
of terminals was greater than 100.

3.9 FST Generator for Uniform Direction Metrics

A new FST generator for uniform orientation metrics was added. A description
of this algorithm appears in [19]. This FST generator was coded in C using
similar techniques as the existing Euclidean and rectilinear FST generators.

3.10 Improved Cut Generation

Significant enhancements were made to the separation procedures in the branch-
and-cut algorithm that affect which constraints are (and are not) generated.
These changes significantly decrease the number of optimize/separate iterations
needed to converge to an optimal subtour relaxation, and also result in LP
instances that are more sparse and that solve more quickly.

3.11 Local Cuts

The branch-and-cut algorithm was improved by adding local cuts — originally
devised by Applegate et al. [2] for the traveling salesman problem. We adapted
them for the spanning tree in hypergraph problem as follows. Let H = (V,E)
be a hypergraph. Let STP (H) be the spanning tree in hypergraph H polytope
(i.e., the convex hull of all incidence vectors corresponding to spanning trees
of H).

Let x̄ be a fractional LP solution vector to separate from STP (H). Let S ⊂
V , and consider the sub-hypergraph H′ = (S,E′) of H induced by S. Let T ⊆ E
be any spanning tree of H, and consider its image in H′, which will always be a
forest (possibly empty, i.e., no edges). Let FP (H′) be the forest in hypergraph
H′ polytope (i.e., the convex hull of all incidence vectors corresponding to forests
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in hypergraph H′). Let x̄′ be the image of x̄ with respect to H′. We produce
a constraint ȳ x ≤ 1 that separates x̄′ from FP (H′), or prove that none exists
because x̄′ ∈ FP (H′).

We start with a set F of forests in H′, represented as incidence vectors.
(Initially, F contains single-edge forests, one for each edge in E′.) Let ȳ be the
optimal solution to the following linear program:

Maximize Z(y) = x̄′ y (LP1)

Subject to

f y ≤ 1 ∀f ∈ F

Let ȳ be an optimal solution to this LP with objective Z̄. If Z̄ ≤ 1, then
x̄′ ∈ conv(F ) ⊂ FP (H′), and we are done — no separating hyperplane exists.
Otherwise Z̄ > 1 and ȳ x ≤ 1 separates x̄′ from F — but this constraint may
not be valid for FP (H′). We test validity by solving the following maximum-
weight forest problem:

Maximize Q(f) = ȳ f (IP1)

Subject to

f ∈ FP (H′)

f ∈ {0, 1}|E
′|

This is an NP-hard optimization problem that we easily reduce to the MST
in hypergraph problem as follows. First produce a minimization problem by
negating the edge weights. Construct a new hypergraph H′′ from H′ by adding 1
new vertex t and a zero weight edge from t to each v ∈ S. There is an obvious one-
to-one correspondence between each spanning tree in H′′ and the corresponding
forest in H′. Let f̄ be any feasible integer solution to IP1 having the objective

Q(f̄) = ȳ f̄ > 1.

Then f̄ ∈ FP (H′) is a certificate that the constraint ȳ x ≤ 1 is not valid for
FP (H′). So add f̄ to set F and start over — solve a new instance of LP1, find
a new constraint ȳ x ≤ 1, and test its validity against the forests of H′. If the
optimal solution of IP1 has objective Q(f) ≤ 1, then this serves as a certificate
to the validity of constraint ȳ x ≤ 1 with respect to polytope FP (H′). This
constraint lifts directly back into the larger space of STP (H) as follows. Let
e′ ∈ E′. Copy the coefficient ȳe′ to every edge e ∈ E such that e ∩ S = e′.
(|e′| ≥ 2 by definition.) Let the coefficient be zero for every edge e ∈ E such that
|e ∩ S| ≤ 1. Note that it is not always necessary to obtain “optimal” solutions
for subproblem IP1 — any solution f having Q(f) > 1 suffices. We use greedy
heuristics to try and find a suitable forest f . Only when these heuristics fail do
we resort to invoking the branch-and-cut recursively to solve IP1 (after reducing
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it to MST in H′′). This recursive invocation of the branch-and-cut terminates
early (before proving optimality) whenever a forest f satisfying Q(f) > 1 is
discovered.

This procedure can be quite efficient when dim(H′) � dim(H), meaning
that we must focus on making |S| sufficiently small. We apply this procedure
only to LP solutions having no violated subtour constraints. The separation
routines for subtour constraints perform various reductions on the support hy-
pergraph before the formal flow-based separation algorithms are applied. When
no subtour violations are present, many of these same reductions can be applied
to arrive at “fractional components” upon which generation of local cuts might
be attempted. By default, local cuts are attempted on any component for which
the induced H′ = (S,E′) satisfies |S| ≤ 80 and |E′| ≤ 256.

These cuts can be very strong in practice. It is not unusual for a single round
of local cuts to close 10% or more of the gap at the root node. Rounds are
repeated until either the gap is closed or no further local cuts can be generated
(either because the x̄′ is already a convex combination of forests, or because the
components become too big to attempt local cuts upon). The default settings
for maximum |S| and |E′| are a tradeoff between the desire to obtain strong
cuts versus the cost of obtaining them, versus the effectiveness of branching. It
is useful to remember that expending large amounts of CPU time to compute a
single cut does not automatically make that cut “strong.”

4 Computational Experience

In this section we present our computational results. First we describe the ex-
perimental setup. Then we describe the performance of the best configuration,
GeoSteiner 4.0 using FST pruning, on three sets of benchmark instances. Then
we compare some older code bases to the most recent one; the goal is to illustrate
the algorithmic improvements of the GeoSteiner software package.

4.1 Experimental Setup

The computational benchmarking was performed on twelve paravirtualized guests
sharing a HP ProLiant BL685c generation 7 server. This model has 256GB of
memory and four AMD Opteron 6380 CPUs, each having sixteen cores running
at a base clock rate of 2.5GHz. The twelve guests were running the 64-bit ver-
sion of Debian 7.4.0 while the host was running OpenSuse 12.3. CPLEX version
12.5.1 was used as LP solver. The source code was compiled with GNU C 4.4.5-8
for Debian, with optimization flag -O2.

For the generation of Euclidean FSTs, we use the -g and -m 2 flags. These
indicate, respectively, that the Zachariasen-Winter greedy heuristic (see Sec-
tion 3.2) should be used instead of the Smith-Lee-Liebman heuristic, and that
precision should be increased by using GMP Level 2 (see Section 3.3). For solving
the FST concatenation problem, the -L flag was used, which enables the usage
of local cuts (see Section 3.11).
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No other parameters were used in the benchmark runs. As a general rule, each
of the three phases — FST generation, FST pruning and FST concatenation —
was allowed to run for at most 24 hours for each problem instance. Exceptions
are discussed below.

In the tables below, the names of the columns is identical, and they are
defined as follows:

FST counts Gen Number of generated FSTs
Prun Number of FSTs after FST pruning
Req Number of required FSTs identified during FST pruning

(FSTs that belong to any minimum Steiner tree)
SMT properties NumF Number of FSTs in minimum Steiner tree

SizeF Average size of FSTs in minimum Steiner tree
Red Reduction over minimum spanning tree (in percent)

FST conc Gap Root LP value vs. optimal value (gap in percent)
Nodes Number of branch-and-bound nodes
LPs Number of LPs solved

CPU time Gen CPU time for FST generation (seconds)
Prun CPU time for FST pruning (seconds)
Conc CPU time for FST concatenation (seconds)
Total Total CPU time for FST generation, FST pruning

and FST concatenation (seconds).

4.2 Benchmark Instances

The benchmark instances are divided into three main sets.

1. The rand points set consists of instances with of size 1000, 2000, . . . , 10, 000,
with 15 randomly generated instances of each size. These were generated
using the rand points program of the GeoSteiner package (randomly and
uniformly distributed points in a square).

2. The estein set from the OR-Library [3] consists of 31 randomly generated
instances: 15 containing 500 terminals, 15 containing 1000 terminals and a
single instance containing 10,000 terminals. All instances are randomly and
uniformly distributed points in a square.

3. The TSPLIB set consists of 45 problems from TSPLIB, a library of in-
stances for the traveling salesman problem which are mainly drawn from
the real world. This benchmark sets contain all instances with 500 or more
terminals used in [24] and [20] (plus the smaller TSPLIB instances from [24]
for comparison purposes).

All problem instances were solved under four different metrics: the Euclidean
metric, the rectilinear metric (two uniform orientations), the hexagonal metric
(three uniform orientations) and the octilinear metric (four uniform orienta-
tions).
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Fig. 2. FST counts for randomly generated problem instances. Averages taken over 15
problem instances for each size.

4.3 Performance of Best Configuration

In this section we report the computational performance using the best configu-
ration of the code, namely GeoSteiner 4.0 using FST pruning. The computational
results are presented in Figures 2 to 4 and in Tables 2 to 13.

FST counts and sizes For randomly generated problem instances, the number
of FSTs follows a very regular pattern (see Figure 2 and Tables 2-9). For the Eu-
clidean problem, around 2.50n FSTs are generated for n terminals; after pruning
around 0.76n FSTs remain, and among these 0.41n FSTs have been identified
as required FSTs. Thus FST pruning removes more than two-thirds of the FSTs
that were originally generated, and only 0.35n FSTs remain undecided in the
FST concatenation problem. A minimum Steiner tree has around 0.60n FSTs,
so approximately 0.19n FSTs need to be selected among the 0.35n undecided
FSTs.

For the rectilinear problem, the FST counts are somewhat higher, but they
are still linear in n: around 4.07n FSTs are generated, 1.41n remain after FST
pruning, and 0.12n FSTs are identified as required; this leaves 1.29n undecided
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FSTs. For the hexogonal and octilinear metrics, the FST counts are sandwiched
between the FST counts for the Euclidean and rectilinear metrics.

The average size of FSTs in a minimum Steiner tree is 2.63 for the hexago-
nal metric, 2.70 for both the Euclidean and octilinear metrics, and 2.94 for the
rectilinear metric. The larger number of generated FSTs for the rectilinear met-
rics can therefore be explained by the fact that FSTs in a rectilinear minimum
Steiner tree span slightly more terminals on average when compared to the other
metrics.

For the TSPLIB instances the FST counts vary significantly, depending on
the distribution of the terminals. For the Euclidean problem, problem instances
where the terminals are aligned on grid lines are particularly difficult, e.g. pcb442
and d1291 for which the number of generated FSTs is significantly larger than
the average for randomly generated problem instances. Problem instance p654,
which has its points partly aligned on grid lines and partly in clusters, is the
smallest unsolved problem for the Euclidean and hexagonal metrics, and it was
also somewhat hard for the octilinear metric (but completely trivial for the
rectilinear metric).

Branch-and-cut performance The LP-relaxation of the integer programming
formulation for the minimum spanning tree in hypergraph problem provides
excellent lower bounds for the problem. In most cases the gap between the LP-
solution and the IP-solution is zero, and the problem is solved at the root node.
Among the TSPLIB instances the largest gap is 0.084%, and the largest number
of branch-and-bound nodes is 661.

The number of LPs solved is basically proportional to the running time of the
branch-and-cut algorithm. In Figure 3 we present plots showing the number of
LPs solved for the randomly generated problem instances. Several of the larger
problem instances did not solve within the time limit of 24 hours, and therefore
no data is shown for these problem instances. For the Euclidean metric, all
problem instances were solved within 1,000 LP-iterations. For the remaining
metrics, some instances required 100,000 or more iterations.

Running times The running time for the randomly generated problem in-
stances, divided into each of the three phases FST generation, FST pruning and
FST concatenation, is shown in Figure 4. For the Euclidean metric, all problem
instances were solved within the time limit of 24 hours. For the rectilinear met-
ric, all problem instances of size 4,000 or less were solved within the time limit;
for the hexagonal and octilinear metrics, all problem instances of size 6,000 or
less were solved within the time limit.

The FST generation phase dominates the total running time for the smaller
problem instances under all metrics except the rectilinear metric. The running
time of FST generation and FST pruning scales in a fairly regular way, and
is approximately quadratic. For larger problem instances, FST concatenation
dominates the total running time for all metrics.
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Fig. 4. Running times for randomly generated problem instances. Averages taken over
15 problem instances for each size. The scaling on the y-axis differs across the four
figures. The FST concatenation problem was not solved for all of the larger rectilinear,
hexagonal and octilinear problem instances — hence no average running times are
shown for the larger problem instances.

For the TSPLIB instances (Tables 10–13), we allowed some of the smaller
problem instances to run for more than 24 hours. When compared to the 2000-
study, the following unsolved Euclidean problem instances have now been solved:
pcb442, p654 (FST generation and pruning only), d1291, pcb3038, fnl4461 and
rl5934. The following unsolved rectilinear problem instance have been solved:
pcb1173, pcb3038, rl5934 and pla7397.

4.4 Performance Across Code Bases and Configurations

The effect of the algorithmic enhancements is illustrated by comparing the
branch-and-bound code on three different code bases: the code used in the 2000-
study (GeoSteiner 2000), the publicly available GeoSteiner 3.1 code and the
commercial GeoSteiner 4.0 code. Also, we show the effect of using FST pruning
in all three cases.
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The tests are made on the 15 estein instances with 1000 terminals. These
problem instances were difficult to solve as rectilinear problems using GeoSteiner
2000, and therefore they nicely illustrate the improvements made. The average
running time in the 2000-study on these 15 instances was around 2,000 seconds
for the Euclidean metric and more than 100,000 seconds for the rectilinear metric.
We estimate that the machine used in the 2000-study was around 15–20 times
slower than the one used in current paper.

Table 1 presents the results of running the old and new code on the 15 estein
instances (on the same modern machine). It follows from the table that the
algorithmic enhancements have resulting in two orders of magnitude speed-up
for the rectilinear problem — and somewhat less for the Euclidean problem. FST
pruning has a significant effect on the performance of the FST concatenation
algorithm.

Version Metric Pruning Nodes LPs Time

2000 Euclidean No 1.3 620.1 322.74
3.1 Euclidean No 1.0 480.1 209.61
4.0 Euclidean No 1.0 41.7 11.73

2000 Euclidean Yes 1.1 23.4 17.50
3.1 Euclidean Yes 1.0 21.7 17.57
4.0 Euclidean Yes 1.0 5.1 12.43

2000 Rectilinear No 142.7 2857.5 7898.26
3.1 Rectilinear No 4.7 1015.1 1844.88
4.0 Rectilinear No 5.3 216.9 85.25

2000 Rectilinear Yes 43.5 4405.5 2803.18
3.1 Rectilinear Yes 2.9 104.1 69.26
4.0 Rectilinear Yes 3.0 40.7 22.10

Table 1. Comparison of different code bases. FST concatenation on the 15 estein
instances of size 1000. Average number of nodes, LPs and running times for FST
concatenation under the Euclidean and rectilinear metric. FSTs are generated and
pruned using GeoSteiner 4.0 for all FST concatenation algorithms. Local cuts were not
activated in the GeoSteiner 4.0 code.

5 Conclusions

In this paper we presented an updated computational study of the GeoSteiner
software package. As a consequence of a number of algorithmic enhancements,
the software package can now compute minimum Steiner trees for 5–10 times
as many terminals when compared to the 2000-study. Highly structured and/or
clustered terminal sets still remain a challenge under some metrics.
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FST counts SMT properties FST conc CPU time
Instance Gen Prun Req NumF SizeF Red Gap Nodes LPs Gen Prun Conc Total

1000 2490 751 415 593 2.68 3.19 0.000 1.0 7.0 15.0 2.1 0.1 17.2
±51 ±28 ±20 ±8 ±0.03 ±0.11 ±0.000 ±0.0 ±2.8 ±1.1 ±0.2 ±0.0 ±1.2

2000 5036 1504 803 1178 2.70 3.29 0.000 1.0 12.9 37.6 6.1 0.5 44.3
±114 ±36 ±44 ±19 ±0.03 ±0.11 ±0.000 ±0.0 ±11.8 ±3.8 ±0.5 ±0.4 ±4.2

3000 7594 2247 1202 1759 2.71 3.30 0.000 1.0 28.0 65.6 11.8 2.3 79.7
±102 ±35 ±39 ±16 ±0.02 ±0.06 ±0.000 ±0.0 ±34.7 ±3.4 ±0.8 ±3.0 ±6.1

4000 10093 3018 1582 2348 2.70 3.27 0.000 1.0 47.9 101.6 20.2 10.7 132.5
±137 ±43 ±41 ±16 ±0.01 ±0.06 ±0.000 ±0.0 ±85.2 ±8.0 ±1.1 ±23.0 ±27.6

5000 12661 3773 1977 2929 2.71 3.29 0.000 1.0 19.4 138.0 29.6 3.0 170.6
±169 ±71 ±59 ±29 ±0.02 ±0.07 ±0.000 ±0.0 ±16.8 ±5.2 ±1.0 ±3.0 ±7.0

6000 15240 4577 2333 3520 2.71 3.30 0.000 1.0 50.6 191.5 43.0 14.4 248.9
±178 ±74 ±76 ±25 ±0.01 ±0.05 ±0.000 ±0.0 ±49.3 ±10.8 ±3.1 ±16.0 ±22.7

7000 17794 5294 2752 4098 2.71 3.32 0.000 1.0 66.5 240.8 57.7 73.5 372.0
±211 ±62 ±92 ±35 ±0.01 ±0.06 ±0.000 ±0.0 ±155.9 ±12.2 ±3.1 ±259.6 ±257.1

8000 20278 6053 3159 4702 2.70 3.30 0.000 1.0 62.0 302.5 73.6 41.6 417.7
±175 ±87 ±75 ±30 ±0.01 ±0.04 ±0.000 ±0.0 ±96.1 ±8.7 ±3.0 ±100.9 ±102.7

9000 22840 6850 3520 5287 2.70 3.27 0.000 1.0 51.5 364.9 94.1 43.1 502.0
±149 ±111 ±97 ±25 ±0.01 ±0.04 ±0.000 ±0.0 ±78.2 ±15.5 ±6.6 ±114.0 ±109.3

10000 24966 7632 4071 5978 2.68 3.31 0.000 1.0 113.7 423.9 109.7 550.0 1083.5
±1563 ±235 ±616 ±402 ±0.09 ±0.04 ±0.000 ±0.0 ±202.2 ±66.3 ±16.1 ±1833.5 ±1843.3

Table 2. Euclidean metric. Randomly generated instances. Averages over 15 instances
for each size; standard deviations on the second line of each row.
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FST counts SMT properties FST conc CPU time
Instance Gen Prun Req NumF SizeF Red Gap Nodes LPs Gen Prun Conc Total

1000 3978 1344 115 517 2.93 11.33 0.003 1.8 35.2 0.0 13.6 2.3 16.1
±98 ±51 ±13 ±10 ±0.04 ±0.26 ±0.009 ±2.2 ±11.6 ±0.0 ±1.5 ±1.4 ±2.3

2000 8239 2820 198 1031 2.94 11.67 0.001 1.7 71.3 0.1 47.5 264.7 312.3
±291 ±145 ±23 ±16 ±0.03 ±0.24 ±0.003 ±2.6 ±41.0 ±0.0 ±7.4 ±790.7 ±792.6

3000 12446 4225 300 1544 2.94 11.76 0.001 1.7 134.8 0.3 99.8 537.1 637.2
±335 ±133 ±32 ±20 ±0.03 ±0.16 ±0.002 ±1.2 ±66.0 ±0.0 ±13.0 ±963.5 ±961.8

4000 16483 5645 396 2060 2.94 11.63 0.003 7.5 295.7 0.4 168.1 4200.9 4369.4
±454 ±212 ±38 ±14 ±0.01 ±0.17 ±0.004 ±7.9 ±288.3 ±0.0 ±21.0 ±11666.0 ±11663.1

5000 20775 7134 483 - - - - - - 0.6 267.8 - -
±440 ±213 ±41 ±0.0 ±29.3

6000 24981 8576 565 - - - - - - 0.9 386.4 - -
±496 ±237 ±40 ±0.0 ±40.4

7000 28973 9914 694 - - - - - - 1.1 526.2 - -
±614 ±220 ±43 ±0.0 ±60.8

8000 33429 11396 761 - - - - - - 1.4 708.4 - -
±447 ±219 ±41 ±0.0 ±94.1

9000 37375 12836 857 - - - - - - 1.8 931.3 - -
±437 ±230 ±49 ±0.0 ±70.4

10000 40740 14097 1192 - - - - - - 2.1 1082.7 - -
±3394 ±590 ±915 ±0.3 ±206.8

Table 3. Rectilinear metric. Randomly generated instances. Averages over 15 instances
for each size; standard deviations on the second line of each row.

FST counts SMT properties FST conc CPU time
Instance Gen Prun Req NumF SizeF Red Gap Nodes LPs Gen Prun Conc Total

1000 2692 1369 203 614 2.63 4.40 0.000 1.1 61.7 146.3 370.5 45.5 562.2
±146 ±49 ±18 ±12 ±0.03 ±0.20 ±0.001 ±0.3 ±125.2 ±27.8 ±118.6 ±164.2 ±258.9

2000 5397 2792 392 1226 2.63 4.48 0.000 1.0 80.3 702.9 918.5 4.4 1625.8
±259 ±109 ±40 ±25 ±0.03 ±0.21 ±0.000 ±0.0 ±77.4 ±130.2 ±233.4 ±4.4 ±325.6

3000 8111 4132 587 1850 2.62 4.50 0.000 1.0 151.1 2008.4 1600.5 17.7 3626.5
±240 ±81 ±29 ±32 ±0.03 ±0.11 ±0.000 ±0.0 ±234.3 ±274.6 ±306.4 ±32.3 ±517.5

4000 10776 5497 776 2460 2.62 4.45 0.000 1.0 275.5 3492.0 2323.7 192.8 6026.6
±321 ±111 ±44 ±26 ±0.02 ±0.13 ±0.000 ±0.0 ±523.1 ±687.0 ±666.8 ±522.0 ±1584.2

5000 13609 6942 968 3100 2.61 4.48 0.000 1.0 1596.3 6050.3 2692.5 609.1 9351.8
±351 ±142 ±38 ±39 ±0.02 ±0.11 ±0.000 ±0.0 ±3471.6 ±825.9 ±622.2 ±1001.2 ±1402.4

6000 16318 8298 1152 3691 2.63 4.52 0.000 1.1 1208.8 10252.2 4093.2 2716.6 17244.7
±441 ±159 ±61 ±45 ±0.02 ±0.10 ±0.000 ±0.3 ±3161.4 ±1618.6 ±1171.3 ±8207.8 ±8230.8

7000 18953 9693 1362 - - - - - - 14448.6 4652.2 - -
±310 ±155 ±51 ±1650.1 ±1060.9

8000 21649 10999 1581 - - - - - - 20039.4 5443.6 - -
±408 ±181 ±46 ±2472.6 ±874.7

9000 24311 12458 1743 - - - - - - 31418.7 5765.9 - -
±450 ±162 ±58 ±2883.3 ±1227.9

10000 26680 13726 2172 - - - - - - 32871.7 7660.6 - -
±2153 ±525 ±947 ±13695.0 ±2388.0

Table 4. Hexagonal metric. Randomly generated instances. Averages over 15 instances
for each size; standard deviations on the second line of each row.



XXIV

FST counts SMT properties FST conc CPU time
Instance Gen Prun Req NumF SizeF Red Gap Nodes LPs Gen Prun Conc Total

1000 2920 891 321 593 2.69 4.49 0.000 1.0 9.9 102.3 218.7 0.5 321.5
±115 ±29 ±22 ±10 ±0.03 ±0.15 ±0.000 ±0.0 ±5.2 ±5.0 ±40.7 ±1.4 ±44.1

2000 6017 1824 625 1178 2.70 4.64 0.000 1.0 22.3 479.1 564.6 0.7 1044.5
±174 ±52 ±40 ±14 ±0.02 ±0.13 ±0.000 ±0.0 ±16.4 ±31.3 ±130.3 ±0.4 ±144.0

3000 8979 2749 918 1768 2.69 4.63 0.000 1.0 135.3 1229.6 830.8 63.4 2123.9
±167 ±52 ±38 ±22 ±0.02 ±0.07 ±0.000 ±0.0 ±200.0 ±41.7 ±109.1 ±165.1 ±132.3

4000 11869 3648 1237 2362 2.69 4.58 0.000 1.0 266.7 2444.3 1263.3 997.5 4705.1
±241 ±70 ±52 ±18 ±0.01 ±0.07 ±0.000 ±0.0 ±917.2 ±113.5 ±274.9 ±3772.9 ±3753.7

5000 14990 4569 1532 2945 2.70 4.62 0.000 1.0 174.7 5366.7 1412.8 155.6 6935.0
±259 ±84 ±67 ±22 ±0.01 ±0.09 ±0.000 ±0.0 ±327.4 ±222.3 ±157.6 ±558.8 ±651.8

6000 18135 5530 1812 3533 2.70 4.62 0.000 1.0 1196.5 8203.7 2092.3 14015.6 24311.6
±350 ±115 ±71 ±23 ±0.01 ±0.06 ±0.000 ±0.0 ±4269.7 ±320.1 ±327.3 ±54200.5 ±53944.6

7000 21111 6414 2129 - - - - - - 8598.7 2330.2 - -
±451 ±83 ±91 ±344.9 ±389.5

8000 24023 7331 2429 - - - - - - 11408.2 2855.4 - -
±355 ±126 ±91 ±372.7 ±409.8

9000 27113 8303 2698 - - - - - - 20094.5 3084.9 - -
±381 ±146 ±86 ±626.0 ±561.1

10000 29517 9209 3193 - - - - - - 24259.5 3611.4 - -
±2192 ±92 ±726 ±4412.9 ±549.6

Table 5. Octilinear metric. Randomly generated instances. Averages over 15 instances
for each size; standard deviations on the second line of each row.

FST counts SMT properties FST conc CPU time
Instance Gen Prun Req NumF SizeF Red Gap Nodes LPs Gen Prun Conc Total
500 (1) 1321 370 213 286 2.74 3.42 0.000 1 7 6.43 1.11 0.04 7.58
500 (2) 1312 394 181 285 2.75 3.51 0.000 1 13 7.07 0.90 0.10 8.07
500 (3) 1321 400 187 288 2.73 3.37 0.000 1 4 6.44 1.00 0.04 7.48
500 (4) 1241 373 201 291 2.71 3.50 0.000 1 4 6.82 0.89 0.05 7.76
500 (5) 1182 356 238 300 2.66 2.87 0.000 1 7 4.91 0.70 0.06 5.67
500 (6) 1308 385 201 287 2.74 3.37 0.000 1 4 7.69 1.01 0.04 8.74
500 (7) 1231 382 199 290 2.72 3.38 0.000 1 6 5.77 0.81 0.06 6.64
500 (8) 1212 369 211 304 2.64 3.17 0.000 1 5 5.78 0.76 0.04 6.58
500 (9) 1279 383 197 294 2.70 3.38 0.000 1 5 6.11 0.89 0.04 7.04
500 (10) 1325 379 182 284 2.76 3.60 0.000 1 4 6.08 1.06 0.05 7.19
500 (11) 1277 383 208 297 2.68 3.25 0.000 1 2 8.25 0.86 0.03 9.14
500 (12) 1218 374 203 302 2.65 3.21 0.000 1 4 6.46 0.76 0.03 7.25
500 (13) 1172 348 232 288 2.73 3.37 0.000 1 4 4.76 0.70 0.04 5.50
500 (14) 1395 414 160 285 2.75 3.27 0.000 1 33 7.83 1.11 0.18 9.12
500 (15) 1268 421 175 294 2.70 3.22 0.000 1 5 6.70 0.95 0.06 7.71
1000 (1) 2435 721 402 580 2.72 3.45 0.000 1 3 14.06 1.98 0.08 16.12
1000 (2) 2533 767 397 587 2.70 3.40 0.000 1 7 13.54 2.07 0.11 15.72
1000 (3) 2424 759 450 609 2.64 3.17 0.000 1 5 17.26 1.96 0.11 19.33
1000 (4) 2676 762 374 572 2.75 3.30 0.000 1 4 14.75 2.75 0.11 17.61
1000 (5) 2413 729 458 604 2.65 3.10 0.000 1 3 14.17 1.81 0.07 16.05
1000 (6) 2525 774 394 582 2.72 3.23 0.000 1 5 14.86 2.19 0.11 17.16
1000 (7) 2454 738 416 587 2.70 3.26 0.000 1 6 14.51 2.11 0.13 16.75
1000 (8) 2533 773 376 586 2.70 3.42 0.000 1 12 15.20 2.07 0.18 17.45
1000 (9) 2603 777 368 576 2.73 3.37 0.000 1 5 16.68 2.36 0.12 19.16
1000 (10) 2472 723 424 598 2.67 3.36 0.000 1 5 13.27 1.78 0.09 15.14
1000 (11) 2532 763 395 583 2.71 3.14 0.000 1 4 14.44 2.22 0.07 16.73
1000 (12) 2616 774 382 570 2.75 3.58 0.000 1 6 16.18 2.41 0.13 18.72
1000 (13) 2488 717 456 591 2.69 3.19 0.000 1 4 14.20 2.02 0.07 16.29
1000 (14) 2522 804 366 587 2.70 3.48 0.000 1 5 15.07 2.16 0.12 17.35
1000 (15) 2531 736 400 576 2.73 3.24 0.000 1 4 15.63 2.15 0.07 17.85
10000 (1) 25125 7436 4125 5905 2.69 3.29 0.000 1 134 416.73 106.94 31.99 555.66

Table 6. Euclidean metric. OR-Library instances.



XXV

FST counts SMT properties FST conc CPU time
Instance Gen Prun Req NumF SizeF Red Gap Nodes LPs Gen Prun Conc Total
500 (1) 1926 626 67 256 2.95 11.52 0.000 1 30 0.01 5.49 0.43 5.93
500 (2) 2248 722 54 245 3.04 12.80 0.000 1 16 0.02 7.01 0.28 7.31
500 (3) 2155 681 50 248 3.01 12.40 0.000 1 50 0.02 5.83 0.50 6.35
500 (4) 1891 693 62 267 2.87 11.26 0.000 1 15 0.01 4.32 0.23 4.56
500 (5) 1868 583 67 257 2.94 11.08 0.000 1 41 0.01 4.04 7.54 11.59
500 (6) 2069 682 58 262 2.90 11.69 0.000 1 14 0.01 5.62 0.30 5.93
500 (7) 1953 604 81 248 3.01 11.74 0.000 1 15 0.01 4.46 0.23 4.70
500 (8) 2025 721 55 257 2.94 11.50 0.000 1 38 0.02 5.07 1.15 6.24
500 (9) 2010 668 49 263 2.90 11.15 0.000 1 41 0.01 5.21 4.71 9.93
500 (10) 1951 619 68 258 2.93 11.53 0.000 1 12 0.01 4.42 0.16 4.59
500 (11) 2065 652 68 257 2.94 11.67 0.000 1 20 0.01 5.76 0.33 6.10
500 (12) 1912 698 57 260 2.92 11.21 0.000 1 17 0.02 5.91 0.34 6.27
500 (13) 1879 657 62 259 2.93 11.66 0.000 1 14 0.02 4.11 0.20 4.33
500 (14) 2122 766 40 248 3.01 12.02 0.000 1 37 0.02 5.67 0.69 6.38
500 (15) 1953 685 63 261 2.91 11.22 0.000 1 22 0.02 5.03 0.40 5.45
1000 (1) 4164 1478 83 520 2.92 11.84 0.000 1 57 0.04 15.93 2.63 18.60
1000 (2) 4009 1335 110 499 3.00 11.43 0.000 1 29 0.04 12.53 4.74 17.31
1000 (3) 4020 1414 111 521 2.92 11.16 0.000 1 12 0.04 14.80 0.59 15.43
1000 (4) 4090 1446 92 503 2.99 11.61 0.000 1 28 0.04 14.18 1.16 15.38
1000 (5) 4013 1388 128 524 2.91 11.34 0.000 1 75 0.04 15.68 23.36 39.08
1000 (6) 4324 1475 115 507 2.97 11.57 0.000 1 107 0.04 17.98 35.65 53.67
1000 (7) 3996 1325 110 524 2.91 11.33 0.000 1 26 0.04 12.98 0.83 13.85
1000 (8) 4290 1461 93 521 2.92 11.80 0.000 1 74 0.04 17.32 11.49 28.85
1000 (9) 4479 1499 99 504 2.98 12.10 0.000 1 26 0.05 19.27 1.25 20.57
1000 (10) 3992 1280 101 507 2.97 11.81 0.000 1 109 0.04 12.44 435.76 448.24
1000 (11) 4020 1426 100 515 2.94 11.36 0.000 1 54 0.04 15.06 2.73 17.83
1000 (12) 4687 1579 78 493 3.03 12.71 0.001 1 27 0.05 26.72 6.90 33.67
1000 (13) 3873 1274 132 521 2.92 11.43 0.000 1 18 0.04 13.19 0.57 13.80
1000 (14) 4324 1478 95 519 2.92 11.74 0.000 1 159 0.05 17.73 71.14 88.92
1000 (15) 4145 1437 105 514 2.94 11.58 0.000 1 39 0.05 15.59 2.75 18.39
10000 (1) 40878 13906 935 5174 2.93 11.63 0.002 19 293 2.10 1183.42 738.66 1924.18

Table 7. Rectilinear metric. OR-Library instances.

FST counts SMT properties FST conc CPU time
Instance Gen Prun Req NumF SizeF Red Gap Nodes LPs Gen Prun Conc Total
500 (1) 1280 639 113 304 2.64 4.71 0.000 1 5 28.55 109.91 0.07 138.53
500 (2) 1403 744 101 299 2.67 4.40 0.000 1 6 34.01 128.62 0.11 162.74
500 (3) 1364 700 102 295 2.69 4.56 0.000 1 5 25.03 101.54 0.08 126.65
500 (4) 1364 658 130 311 2.60 5.01 0.000 1 11 30.99 147.93 0.10 179.02
500 (5) 1218 656 117 309 2.61 4.12 0.000 1 8 20.44 58.74 0.08 79.26
500 (6) 1303 652 121 307 2.63 4.33 0.000 1 71 34.11 154.02 0.43 188.56
500 (7) 1292 703 92 320 2.56 4.74 0.000 1 6 23.76 92.77 0.09 116.62
500 (8) 1383 691 100 313 2.59 4.24 0.000 1 7 26.36 181.59 0.08 208.03
500 (9) 1254 650 129 311 2.60 4.99 0.000 1 6 32.65 94.35 0.08 127.08
500 (10) 1316 677 88 305 2.64 4.39 0.000 1 4 38.03 151.32 0.08 189.43
500 (11) 1353 680 93 309 2.61 4.69 0.000 1 9 26.81 191.68 0.13 218.62
500 (12) 1201 683 99 324 2.54 4.12 0.000 1 11 18.92 98.35 0.12 117.39
500 (13) 1209 672 91 306 2.63 4.48 0.000 1 5 18.44 50.69 0.09 69.22
500 (14) 1432 708 81 288 2.73 4.43 0.000 1 24 35.82 154.47 0.16 190.45
500 (15) 1420 697 103 312 2.60 4.51 0.000 1 6 31.84 183.58 0.11 215.53
1000 (1) 2799 1377 200 588 2.70 4.58 0.000 1 12 161.22 410.31 0.28 571.81
1000 (2) 2760 1349 225 601 2.66 4.72 0.000 1 16 169.85 276.52 0.32 446.69
1000 (3) 2456 1346 240 635 2.57 3.75 0.000 1 33 127.66 303.06 0.48 431.20
1000 (4) 2691 1365 186 590 2.69 4.33 0.000 1 16 125.46 257.62 0.36 383.44
1000 (5) 2597 1390 195 612 2.63 4.43 0.000 1 17 121.39 266.45 0.36 388.20
1000 (6) 2806 1464 200 612 2.63 4.45 0.000 1 12 195.17 385.22 0.36 580.75
1000 (7) 2425 1265 259 641 2.56 4.26 0.000 1 7 99.50 241.33 0.23 341.06
1000 (8) 2844 1427 169 600 2.66 4.81 0.000 1 3106 193.73 495.99 86.65 776.37
1000 (9) 3041 1494 172 604 2.65 4.54 0.000 1 22 219.68 685.77 0.46 905.91
1000 (10) 2776 1400 187 602 2.66 4.55 0.000 1 36 101.18 293.27 0.63 395.08
1000 (11) 2706 1326 210 632 2.58 4.49 0.000 1 7 151.22 484.06 0.20 635.48
1000 (12) 2832 1421 201 608 2.64 5.02 0.000 1 11 172.82 328.58 0.35 501.75
1000 (13) 2497 1270 215 617 2.62 4.20 0.000 1 10 116.71 251.36 0.23 368.30
1000 (14) 2861 1402 192 616 2.62 4.65 0.000 1 10 211.47 392.57 0.30 604.34
1000 (15) 2725 1333 190 620 2.61 4.75 0.000 1 12 207.58 434.25 0.31 642.14
10000 (1) 26249 13785 1965 6174 2.62 4.52 0.000 1 59 27936.87 5149.89 33.92 33120.68

Table 8. Hexagonal metric. OR-Library instances.



XXVI

FST counts SMT properties FST conc CPU time
Instance Gen Prun Req NumF SizeF Red Gap Nodes LPs Gen Prun Conc Total
500 (1) 1602 425 185 283 2.76 4.67 0.000 1 4 22.06 143.24 0.06 165.36
500 (2) 1657 490 139 281 2.78 5.15 0.000 1 12 27.41 93.65 0.10 121.16
500 (3) 1666 511 116 284 2.76 4.84 0.000 1 6 25.39 93.46 0.07 118.92
500 (4) 1548 465 157 294 2.70 5.08 0.000 1 4 23.86 105.96 0.06 129.88
500 (5) 1391 469 166 302 2.65 4.17 0.000 1 7 18.96 55.68 0.06 74.70
500 (6) 1547 446 161 294 2.70 4.62 0.000 1 11 23.10 128.59 0.08 151.77
500 (7) 1450 462 158 296 2.69 4.62 0.000 1 4 19.98 71.90 0.04 91.92
500 (8) 1418 441 160 301 2.66 4.56 0.000 1 6 21.05 72.98 0.06 94.09
500 (9) 1426 447 166 300 2.66 4.48 0.000 1 56 21.59 72.66 0.35 94.60
500 (10) 1472 451 155 293 2.70 4.72 0.000 1 8 21.22 82.42 0.07 103.71
500 (11) 1535 463 141 300 2.66 4.56 0.000 1 7 25.51 139.05 0.06 164.62
500 (12) 1328 420 181 301 2.66 4.42 0.000 1 4 19.70 73.55 0.04 93.29
500 (13) 1430 422 191 295 2.69 4.66 0.000 1 15 18.61 55.73 0.16 74.50
500 (14) 1623 501 128 288 2.73 4.59 0.000 1 5 25.61 115.57 0.06 141.24
500 (15) 1549 493 143 300 2.66 4.63 0.000 1 44 21.60 111.09 9.69 142.38
1000 (1) 2832 882 340 615 2.62 4.66 0.000 1 7 99.67 225.55 0.29 325.51
1000 (2) 2973 954 286 586 2.70 4.81 0.000 1 9 112.00 148.82 0.19 261.01
1000 (3) 2961 952 324 605 2.65 4.32 0.000 1 18 109.03 357.76 0.24 467.03
1000 (4) 3141 934 297 576 2.73 4.82 0.000 1 7 117.16 200.84 0.13 318.13
1000 (5) 2962 886 368 608 2.64 4.31 0.000 1 8 107.23 212.93 0.14 320.30
1000 (6) 3104 914 314 588 2.70 4.65 0.000 1 30 111.17 181.13 0.36 292.66
1000 (7) 2869 902 305 580 2.72 4.55 0.000 1 21 98.74 222.80 0.58 322.12
1000 (8) 3079 923 279 576 2.73 4.89 0.000 1 122 121.31 219.21 540.03 880.55
1000 (9) 3048 965 288 585 2.71 4.64 0.000 1 19 118.86 235.96 0.35 355.17
1000 (10) 2954 898 315 598 2.67 4.74 0.000 1 8 104.18 183.66 0.17 288.01
1000 (11) 3029 942 273 587 2.70 4.54 0.000 1 6 113.05 211.09 0.15 324.29
1000 (12) 3321 920 312 571 2.75 4.94 0.000 1 8 131.34 260.39 0.17 391.90
1000 (13) 2826 849 356 583 2.71 4.43 0.000 1 5 93.60 238.36 0.10 332.06
1000 (14) 3257 948 292 586 2.70 4.88 0.000 1 9 130.79 245.74 0.16 376.69
1000 (15) 2988 916 290 574 2.74 4.56 0.000 1 5 110.72 212.12 0.15 322.99
10000 (1) 29855 9091 3058 5886 2.70 4.58 0.000 1 134 25932.21 3441.30 30.10 29403.61

Table 9. Octilinear metric. OR-Library instances.



XXVII

FST counts SMT properties FST conc CPU time
Instance Gen Prun Req NumF SizeF Red Gap Nodes LPs Gen Prun Conc Total

d198 852 264 54 103 2.91 2.91 0.000 1 5 21.92 1.92 0.03 23.87
lin318 1229 442 42 208 2.52 4.77 0.000 1 7 15.21 1.72 0.07 17.00
fl417 3656 2207 94 180 3.31 3.34 0.000 1 6 209.87 55.44 0.25 265.56

pcb442 8690 1771 126 261 2.69 4.08 0.042 13 108 38917.65 1499.18 2.54 40419.37
att532 1382 404 217 310 2.71 3.36 0.000 1 19 13.64 1.04 0.14 14.82
ali535 1271 416 262 338 2.58 2.81 0.000 1 11 19.00 1.14 0.06 20.20
u574 1426 450 230 344 2.67 3.15 0.000 1 10 13.03 1.10 0.09 14.22

rat575 1651 503 170 323 2.78 3.62 0.000 1 9 15.97 1.51 0.14 17.62
p654 29943 14458 120 - - - - - - 882034.39 21822.87 - -
d657 1654 494 277 390 2.68 3.00 0.000 1 6 52.12 1.83 0.07 54.02

gr666 1763 497 261 378 2.76 3.15 0.000 1 8 56.49 1.79 0.09 58.37
u724 1926 515 304 409 2.77 3.53 0.000 1 4 13.23 1.59 0.05 14.87

rat783 2153 658 232 448 2.75 3.52 0.000 1 7 19.32 1.95 0.12 21.39
dsj1000 2457 719 466 596 2.68 2.88 0.000 1 11 71.97 3.09 0.14 75.20
pr1002 2512 721 448 579 2.73 3.05 0.000 1 4 46.74 2.69 0.09 49.52
u1060 3690 1470 431 597 2.77 3.25 0.005 37 255 110.76 16.41 19.31 146.48

vm1084 2244 915 633 786 2.38 2.75 0.000 1 5 10.76 1.47 0.09 12.32
pcb1173 2941 994 613 802 2.46 3.18 0.000 1 11 43.66 5.04 0.21 48.91

d1291 33100 3204 82 996 2.30 2.78 0.027 49 1040 353162.66 3092.52 177.48 356432.66
rl1304 2529 1204 869 1058 2.23 1.68 0.000 1 6 15.86 2.10 0.15 18.11
rl1323 2500 1204 883 1076 2.23 1.65 0.000 1 4 23.09 1.91 0.08 25.08

nrw1379 4105 1255 345 752 2.83 4.16 0.000 1 9 43.83 5.88 0.39 50.10
fl1400 - - - - - - - - - - - - -
u1432 - - - - - - - - - - - - -
fl1577 - - - - - - - - - - - - -
d1655 - - - - - - - - - - - - -

vm1748 3643 1527 943 1258 2.39 2.81 0.000 1 6 23.10 3.43 0.23 26.76
u1817 - - - - - - - - - - - - -
rl1889 3651 1683 1248 1485 2.27 2.02 0.000 1 4 29.53 4.06 0.19 33.78
d2103 - - - - - - - - - - - - -
u2152 - - - - - - - - - - - - -
u2319 - - - - - - - - - - - - -

pr2392 6373 2016 987 1476 2.62 3.61 0.000 1 6 67.20 10.56 0.40 78.16
pcb3038 11636 4376 914 1879 2.62 3.69 0.004 13 163 720.95 97.82 85.85 904.62

fl3795 - - - - - - - - - - - - -
fnl4461 13323 4068 1091 2457 2.82 4.13 0.000 1 159 301.81 46.13 44.95 392.89
rl5915 18995 7034 3479 4979 2.19 2.22 0.000 1 25 3025.80 136.86 4.57 3167.23
rl5934 18163 7239 3129 4825 2.23 2.13 0.001 3 232 1152.83 146.80 661.40 1961.03

pla7397 - - - - - - - - - - - - -
rl11849 - - - - - - - - - - - - -

usa13509 33327 10810 5586 - - - - - - 3539.85 240.38 - -
brd14051 40831 12305 3986 7864 2.79 4.00 0.000 1 467 36234.57 665.05 3660.68 40560.30

d15112 43467 12714 4465 - - - - - - 6740.17 483.48 - -
d18512 54211 16447 5028 10323 2.79 4.04 0.000 1 1336 12045.25 834.17 122217.99 135097.41

pla33810 - - - - - - - - - - - - -

Table 10. Euclidean metric. TSPLIB instances.



XXVIII

FST counts SMT properties FST conc CPU time
Instance Gen Prun Req NumF SizeF Red Gap Nodes LPs Gen Prun Conc Total

d198 265 200 143 173 2.14 3.66 0.000 1 3 0.00 0.06 0.00 0.06
lin318 963 492 53 227 2.40 8.90 0.000 1 60 0.01 1.49 2694.71 2696.21
fl417 1178 698 127 238 2.75 11.94 0.000 1 75 0.01 1.75 62.01 63.77

pcb442 558 422 353 394 2.12 3.99 0.000 1 3 0.01 0.11 0.03 0.15
att532 2230 751 78 273 2.95 11.44 0.000 1 222 0.01 6.97 83.95 90.93
ali535 1788 575 157 308 2.73 9.77 0.000 1 47 0.01 3.67 0.81 4.49
u574 1470 586 176 375 2.53 8.94 0.000 1 10 0.01 1.61 0.13 1.75

rat575 3326 1217 17 282 3.04 13.11 0.000 1 16 0.03 13.43 0.72 14.18
p654 930 668 504 586 2.11 5.89 0.000 1 4 0.03 0.40 0.05 0.48
d657 2259 841 121 379 2.73 10.57 0.000 1 118 0.02 4.78 4.61 9.41

gr666 2804 930 95 349 2.91 11.03 0.000 1 210 0.02 10.06 47.52 57.60
u724 1658 813 250 506 2.43 9.63 0.000 1 29 0.02 1.57 0.50 2.09

rat783 3870 1432 39 418 2.87 12.65 0.000 1 61 0.04 15.85 1.51 17.40
dsj1000 4086 1254 136 503 2.99 11.09 0.000 1 25 0.04 15.13 1.10 16.27
pr1002 2147 922 459 702 2.43 8.63 0.000 1 11 0.04 1.81 0.86 2.71
u1060 2765 1236 327 675 2.57 11.35 0.000 1 145 0.04 4.48 774.91 779.43

vm1084 2313 1137 612 838 2.29 8.35 0.000 1 15 0.05 2.69 0.34 3.08
pcb1173 2886 941 408 688 2.70 6.20 0.000 1 12 0.04 3.58 0.40 4.02

d1291 1379 1334 1164 1250 2.03 1.80 0.000 1 4 0.06 0.41 0.06 0.53
rl1304 1926 1254 1007 1141 2.14 5.04 0.000 1 7 0.05 1.07 0.14 1.26
rl1323 1899 1287 956 1157 2.14 5.45 0.000 1 7 0.05 1.12 0.13 1.30

nrw1379 8202 2864 55 661 3.08 13.02 0.000 1 84 0.09 90.45 25.81 116.35
fl1400 5830 3667 166 - - - - - - 0.10 19.90 - -
u1432 1431 1431 1431 1431 2.00 0.00 0.000 1 1 0.06 0.21 0.03 0.30
fl1577 3820 2416 601 1191 2.32 10.59 0.000 1 11 0.08 5.82 1.29 7.19
d1655 2129 1677 1314 1508 2.10 3.57 0.000 1 16 0.07 1.14 0.32 1.53

vm1748 3912 1940 945 1328 2.32 8.93 0.000 1 30 0.11 6.88 3.15 10.14
u1817 1839 1820 1787 1805 2.01 0.36 0.000 1 3 0.10 0.37 0.05 0.52
rl1889 2867 1836 1355 1612 2.17 5.49 0.000 1 6 0.09 2.18 0.31 2.58
d2103 2240 2104 1964 2046 2.03 0.61 0.000 1 3 0.14 0.89 0.08 1.11
u2152 2171 2160 2123 2142 2.00 0.22 0.000 1 4 0.13 0.48 0.06 0.67
u2319 2318 2318 2318 2318 2.00 0.00 0.000 1 1 0.17 0.54 0.02 0.73

pr2392 4443 2357 1204 1738 2.38 7.75 0.000 1 14 0.13 4.11 1.01 5.25
pcb3038 9048 3138 706 1704 2.78 6.20 0.000 1 4764 0.19 30.73 16448.87 16479.79

fl3795 7768 5986 2727 - - - - - - 0.41 17.96 - -
fnl4461 27818 9473 163 - - - - - - 0.54 762.73 - -
rl5915 7462 5841 4989 5425 2.09 3.46 0.000 1 21 0.72 7.49 4.55 12.76
rl5934 8052 5898 4762 5353 2.11 3.15 0.000 1 24 0.70 9.65 2.85 13.20

pla7397 10452 7799 5608 6779 2.09 3.88 0.000 1 99 1.35 19.52 11.61 32.48
rl11849 16582 11758 9069 10432 2.14 3.86 0.000 1 321 2.76 49.10 143.68 195.54

usa13509 53025 18585 1804 - - - - - - 2.94 1969.08 - -
brd14051 77236 27581 700 - - - - - - 3.65 7491.68 - -

d15112 80581 28224 784 - - - - - - 4.84 7039.53 - -
d18512 105887 37497 823 - - - - - - 6.14 15157.44 - -

pla33810 47821 35328 20269 27432 2.23 2.07 0.000 3 4420 22.10 404.54 5644.07 6070.71

Table 11. Rectilinear metric. TSPLIB instances.



XXIX

FST counts SMT properties FST conc CPU time
Instance Gen Prun Req NumF SizeF Red Gap Nodes LPs Gen Prun Conc Total

d198 544 419 26 133 2.48 3.58 0.000 1 55 1.38 50.51 1.08 52.97
lin318 1415 547 58 214 2.48 4.61 0.000 1 7 61.00 253.12 0.11 314.23
fl417 1734 1067 35 201 3.07 4.94 0.000 1 89 74.45 574.01 1.31 649.77

pcb442 5520 1227 122 296 2.49 5.35 0.084 11 36 850.51 15382.63 0.88 16234.02
att532 1521 699 111 327 2.62 4.83 0.000 1 62 34.79 257.00 0.72 292.51
ali535 1437 773 122 366 2.46 3.68 0.000 1 85 72.68 383.60 0.69 456.97
u574 1338 843 125 368 2.56 3.40 0.000 1 15 13.01 165.38 0.17 178.56

rat575 2143 1034 60 323 2.78 5.27 0.000 1 5 173.76 323.16 0.15 497.07
p654 - - - - - - - - - - - - -
d657 2002 1049 106 391 2.68 4.35 0.000 1 26 52.23 790.81 0.40 843.44

gr666 2054 959 106 401 2.66 4.55 0.000 1 20 54.66 770.20 0.50 825.36
u724 1717 1205 120 484 2.49 3.44 0.000 1 11 32.39 117.40 0.23 150.02

rat783 2593 1323 91 460 2.70 4.95 0.000 1 22 165.36 451.75 0.45 617.56
dsj1000 2750 1338 243 610 2.64 3.97 0.000 1 16 130.02 1440.26 0.42 1570.70
pr1002 2695 1506 193 645 2.55 4.28 0.000 1 30 58.51 1039.10 0.57 1098.18
u1060 3022 1790 196 - - - - - - 107.22 1402.49 - -

vm1084 1933 1496 411 845 2.28 2.52 0.000 1 6 26.65 98.04 0.25 124.94
pcb1173 3043 1555 400 787 2.49 4.72 0.000 1 8 279.14 2751.92 0.29 3031.35

d1291 5425 3986 38 1034 2.25 3.65 0.000 1 21 837.83 4527.74 1.69 5367.26
rl1304 1905 1750 770 1165 2.12 0.73 0.000 1 18 13.77 112.27 0.55 126.59
rl1323 2053 1763 714 1154 2.15 1.44 0.000 1 7 19.70 225.99 0.31 246.00

nrw1379 6051 2740 93 756 2.82 5.89 0.000 1 174 3368.13 2971.76 19.13 6359.02
fl1400 15416 7589 74 - - - - - - 17090.64 35574.42 - -
u1432 - - - - - - - - - - - - -
fl1577 7229 5509 324 1228 2.28 3.42 0.000 1 11 17501.08 26926.86 3.91 44431.85
d1655 4232 2882 494 1235 2.34 4.71 0.031 43 17616 92.42 3462.87 13426.57 16981.86

vm1748 3301 2412 709 1353 2.29 2.96 0.000 1 29 105.07 381.21 1.43 487.71
u1817 11066 5393 61 1379 2.32 3.68 0.003 3 12853 12711.96 68964.49 15653.42 97329.87
rl1889 2847 2415 1005 1598 2.18 1.71 0.000 1 9 33.54 130.51 0.63 164.68
d2103 7312 5381 66 1985 2.06 0.95 0.000 1 8 326.33 6170.10 1.45 6497.88
u2152 12094 5861 212 1578 2.36 4.23 0.000 1 324 36195.36 66704.89 26.97 102927.22
u2319 - - - - - - - - - - - - -

pr2392 6313 3676 521 1519 2.57 4.99 0.000 1 23 189.22 742.03 2.56 933.81
pcb3038 12553 5529 470 - - - - - - 48677.24 44133.20 - -

fl3795 - - - - - - - - - - - - -
fnl4461 17124 8029 389 - - - - - - 17103.32 12753.33 - -
rl5915 10090 8679 3418 5337 2.11 1.42 0.000 1 29 620.76 1412.03 5.38 2038.17
rl5934 10154 8767 3083 5256 2.13 1.37 0.000 1 15 709.07 2469.14 5.13 3183.34

pla7397 - - - - - - - - - - - - -
rl11849 - - - - - - - - - - - - -

usa13509 - - - - - - - - - - - - -
brd14051 - - - - - - - - - - - - -

d15112 - - - - - - - - - - - - -
d18512 - - - - - - - - - - - - -

pla33810 - - - - - - - - - - - - -

Table 12. Hexagonal metric. TSPLIB instances.



XXX

FST counts SMT properties FST conc CPU time
Instance Gen Prun Req NumF SizeF Red Gap Nodes LPs Gen Prun Conc Total

d198 277 239 90 153 2.29 1.67 0.000 1 4 0.28 12.78 0.02 13.08
lin318 1320 532 35 210 2.51 5.83 0.000 1 73 7.82 152.74 0.80 161.36
fl417 1357 653 125 217 2.92 2.97 0.000 1 8 6.69 256.11 0.22 263.02

pcb442 680 529 228 318 2.39 2.88 0.035 5 33 1.26 31.88 0.69 33.83
att532 1706 496 158 313 2.70 4.68 0.000 1 11 21.43 258.74 0.09 280.26
ali535 1390 493 228 359 2.49 4.05 0.000 1 209 16.61 288.51 1.74 306.86
u574 1298 536 237 377 2.52 3.82 0.000 1 7 10.96 140.89 0.16 152.01

rat575 1784 670 117 343 2.67 4.97 0.000 1 15 28.73 79.14 1.14 109.01
p654 1466 1014 136 328 2.99 3.41 0.050 419 2685 5.29 222.32 3204.50 3432.11
d657 1575 660 254 431 2.52 3.92 0.000 1 11 17.78 454.49 0.11 472.38

gr666 2138 626 207 382 2.74 4.62 0.000 1 18 34.35 734.36 0.19 768.90
u724 1389 723 307 513 2.41 3.48 0.000 1 6 12.63 47.23 0.17 60.03

rat783 2331 843 178 491 2.59 4.98 0.000 1 6 44.93 146.73 0.12 191.78
dsj1000 2887 824 394 583 2.71 4.16 0.000 1 5 97.30 1247.34 0.14 1344.78
pr1002 1967 998 451 688 2.45 3.40 0.000 1 4 20.83 375.04 0.18 396.05
u1060 3179 1254 466 693 2.53 3.26 0.000 1 1292 50.00 1786.55 91427.58 93264.13

vm1084 1933 1045 674 838 2.29 3.41 0.000 1 12 28.25 85.37 0.27 113.89
pcb1173 2586 1119 551 798 2.47 3.15 0.000 1 7 51.11 740.75 0.17 792.03

d1291 2776 2097 233 - - - - - - 18.07 1282.39 - -
rl1304 1869 1339 906 1123 2.16 1.93 0.000 1 6 16.91 151.40 0.16 168.47
rl1323 1775 1324 948 1151 2.15 1.83 0.000 1 4 17.82 159.96 0.15 177.93

nrw1379 5209 1577 266 786 2.75 5.52 0.000 1 59 289.63 688.16 4.67 982.46
fl1400 16860 6697 184 - - - - - - 752.03 34119.33 - -
u1432 2402 2029 342 863 2.66 3.34 0.043 661 8178 8.55 58.83 1423.10 1490.48
fl1577 4356 2635 494 1209 2.30 1.62 0.000 1 102 71.09 3847.04 6.15 3924.28
d1655 2749 2195 664 1244 2.33 2.45 0.019 83 1403 23.49 1600.79 873.80 2498.08

vm1748 3306 1695 1019 1335 2.31 3.51 0.000 1 8 92.25 264.12 0.79 357.16
u1817 3715 2938 161 - - - - - - 38.69 680.79 - -
rl1889 2789 1892 1303 1610 2.17 2.29 0.000 1 8 48.84 232.01 0.43 281.28
d2103 4447 3474 177 1919 2.10 0.83 0.000 1 13 55.68 3794.06 1.48 3851.22
u2152 3971 3375 260 1548 2.39 2.22 0.000 1 166 43.68 179.66 22.80 246.14
u2319 5975 4176 92 - - - - - - 34.58 190.78 - -

pr2392 4866 2654 1134 1688 2.42 3.69 0.000 1 9 119.54 240.68 1.30 361.52
pcb3038 10898 4015 844 1900 2.60 3.57 0.003 19 151 1004.02 12879.92 46.90 13930.84

fl3795 - - - - - - - - - - - - -
fnl4461 17014 5184 727 2464 2.81 5.45 0.000 1 458 7400.69 4035.67 556.04 11992.40
rl5915 9400 6924 3798 5224 2.13 1.95 0.000 1 23 635.37 1618.47 5.19 2259.03
rl5934 9902 7043 3439 5172 2.15 1.80 0.000 1 177 858.25 3597.12 35.64 4491.01

pla7397 17429 11966 1766 - - - - - - 2456.84 55923.99 - -
rl11849 21470 14421 6298 9468 2.25 2.30 0.000 3 137 6010.50 23773.68 257.75 30041.93

usa13509 39254 12801 4533 - - - - - - 41525.14 56671.60 - -
brd14051 - - - - - - - - - - - - -

d15112 - - - - - - - - - - - - -
d18512 - - - - - - - - - - - - -

pla33810 - - - - - - - - - - - - -

Table 13. Octilinear metric. TSPLIB instances.


