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Abstract. We present a class of heuristics for the Euclidean Steiner tree
problem in a d-dimensional space, d ≥ 3. These heuristics identify small
subsets with few, geometrically close, terminals using Delaunay tessella-
tions and minimum spanning trees. Low cost spanning trees of these sub-
sets are determined by applying the exact algorithm for the Euclidean
Steiner minimal tree in d-space as well as its heuristic modifications.
These low cost spanning trees are sorted according to an appropriately
chosen measure of quality. A tree spanning all terminals is constructed
using greedy concatenation. Computational experiments indicate that
problem instances with 80,000 terminals in R3, 41,000 terminals in R4,
15,000 terminals in R5, and 3,800 terminals in R6, can be solved within
1 minute while producing high quality solutions.
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1 Introduction

Let Rd denote the d-dimensional Euclidean space, d ≥ 2. The coordinates of a
point p ∈ Rd are specified by d numbers, i.e., p = (p1, p2, . . . , pd). The length of
a line segment e = (u, v) between two points u and v is given by

||e|| =

√√√√ d∑
i=1

(vi − ui)2 (1)

Let T = {t1, t2, . . . , tn} denote a set of n terminals in Rd. The Euclidean
Steiner minimal tree (SMT) problem for T in Rd asks for the shortest connected
network N = (V,E), T ⊆ V . The length ||N || of N is the sum of lengths of its
line segments. N has to be a tree. If V = T , then N is the Euclidean minimum
spanning tree (MST) of T . It usually is not the shortest network spanning T . If
line segments are permitted to meet at T and at appropriately located Steiner
points S = V \T , a shorter Steiner tree spanning T can be obtained. Consider for
example 3 terminals placed at the corners of a unit length equilateral triangle.
Its MST, shown in Fig. 1 (left), has length 2 while the shortest possible network,
shown in Fig. 1 (right), has length

√
3/2.
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Fig. 1. MST and SMT for 3 corners of an equilateral triangle.

The Euclidean Steiner tree problem in R2 has been extensively studied in the
literature. GeoSteiner [18, 11] is an exact algorithm that can solve to optimality
fairly large problem instances with thousands of terminals. Also efficient and
practical heuristics have been suggested [19]. The same problem but in Rd, d ≥ 3,
has received considerable less attention. Furthermore, it seems to be much more
difficult. Exact algorithms [15, 6, 7] can approximate optimal solutions for not
more than 12-18 terminals. Very few heuristic solutions (focusing on the R3 case)
have been suggested in the literature [14, 17]. The purpose of this paper is to
generalize one of the most efficient heuristics in R2 [13, 19] to higher dimension
spaces, and to provide computational results of its performance.

The paper is organized as follows. Section 2 gives the definitions, discusses
some basic properties of the Euclidean SMTs and mentions some Steiner ratio
results. The numerical optimization algorithm that can approximate the Eu-
clidean SMT is discussed in Section 3. The heuristic (that uses this numerical
optimization algorithm to solve small problem instances) is described in Sec-
tion 4. Section 5 discusses three different ways of finding good solutions to small
problem instances (with up to 7 terminals). Section 6 discusses how to identify
small subsets of terminals with good Steiner ratios as well as methods of find-
ing good solutions to such subsets. Concatenation of low cost trees for covered
d-simplices and sausages to obtain a low cost tree for all terminals is discussed
in Section 7. Computational results are given in Section 8 while conclusions are
given in Section 9.

2 Definitions

A k-simplex in Rd is a polytope which is the convex hull of k+1 affinely indepen-
dent points, k ≤ d. The convex hull of any nonempty proper subset of extreme
points of a k-simplex is called a face of the simplex. A facet of a k-simplex is any
face which is also a (k− 1)-simplex. A simplicial complex K is a set of simplices
that satisfy the following conditions:

• Any face of a simplex from K is also in K.
• The intersection of any two simplices σ1, σ2 ∈ K is a face of both σ1 and
σ2.

A Delaunay tessellation DT (T ) of T in Rd is a maximal collection of d-
simplices such that no terminal of T is inside the d-sphere circumscribing a
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d-simplex in DT (T ). DT (T ) is a simplicial complex. Let MST (T ) denote the
Euclidean MST of T . It is well-known that MST (T ) is a subgraph of DT (T ).

Given a pair of d-simplices σ1 and σ2 in DT (T ) that share a facet, their
union is a simplicial complex consisting of d+ 2 terminals from T . It is denoted
by σ1 ⊕ σ2. The union operator extends in a natural way to larger facet-sharing
simplicial complexes.

A d-sausage Sm, m ≥ 1, in DT (T ) is defined recursively as follows:

• S1 is a d-simplex in DT (T ). Assume that its d+ 1 terminals have distinct
consecutive integer labels.
• Let σ be a d-simplex in DT (T ) consisting of the d highest (or lowest) labeled

terminals of Sm and a terminal t 6∈ Sm. Give t the label one greater than
(or one less than) any label in Sm and let Sm+1 = Sm ⊕ σ.

A d-sausage is regular if it consists of regular d-simplices. A regular 3-sausage is
shown in Fig. 2.

Fig. 2. 3-sausages are formed using the corners of a sequence of regular tetrahedra
sharing faces

2.1 Properties

Let SMT (T ) denote the Euclidean SMT for a set of terminals T in Rd. Let E
denote the line segments (edges) of SMT (T ) and let S denote Steiner points of
SMT (T ). SMT (T ) has, among others, the following properties [10]:

• It is a tree.
• Edges in E are non-intersecting line segments.
• Every t ∈ T has degree at most 3. Every s ∈ S has degree 3.
• Line segments meeting at a terminal make at least 120o angles with each

other. Line segments meeting at a Steiner point make exactly 120o angles
with each other.

• |S| ≤ n− 2 and |E| ≤ 2n− 3.

Any tree with the above properties is called a Steiner tree of T . If it has n−2
Steiner points then it is called a full Steiner tree of T . If the locations of Steiner
points are not important, a (full) Steiner topology (FST) defines the connections
between terminals and Steiner points. The exact algorithm for the Euclidean
SMT problem in R2 [18] finds full Steiner trees for well-chosen (usually few)
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FSTs. Among all possible ways of concatenating these full Steiner trees, a union
minimizing the total weight and spanning all terminals yields the SMT (T ).

Smith’s algorithm for the Euclidean SMT in Rd, d ≥ 2, works in a different
way [15]. It enumerates all FSTs of T . For a given FST, a numerical method is
used to approximate the shortest tree with this FST. It exists, it is unique, and
it is called a relatively minimal tree (RMT) for this FST. The shortest among all
RMTs yields SMT (T ). RMTs may be degenerate if they have zero length line
segments. This can happen when Steiner points overlap with terminals or with
each other. In the latter case, such an RMT cannot be the SMT (T ).

It can be shown [10] that the number f(n) of FSTs for a set of n terminals,
n ≥ 3, is given by

f(n) = 1× 3× 5× . . .× (2n− 5) =
(2n− 4)!

(n− 2)!2n−2
(2)

2.2 Steiner Ratio

Let

ρd(T ) =
||SMT (T )||
||MST (T )||

(3)

where T is a d-dimensional set of terminals. Clearly ρd(T ) ≤ 1. Define the Steiner
ratio

ρd = inf
T
{ρd(T )} (4)

It has been conjectured [9] that

ρ2 =

√
3

2
≈ 0.866025 . . . (5)

While this conjecture is believed to be true, its proof has not been obtained yet.
It has also been conjectured [9] that ρd, d ≥ 2, is achieved when T consists of
extreme points of a regular d-simplex. For example, it was conjuctured that

ρ3 =
1 +
√

6

3
√

2
≈ 0.813052 . . . (6)

However, this conjecture was disproved for 3 ≤ d ≤ 9 [15] and subsequently
for any d ≥ 3 [4]. It has been shown [16] that the Steiner ratio for the regular
3-sausage Sm is 0.8080649361 when m = 3. It decreases as m increases and it is
bounded from above by 0.7841903733771 as m→∞.

3 Approximation Scheme for the SMT Problem

The Euclidean SMT problem in Rd is NP-hard even for d = 2 [8]. It also has been
shown that a geometrical construction approach for d ≥ 3 would require solving
eight-degree polynomials [15]. As a consequence, numerical approaches are the
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only way to approximate optimal solutions of the Euclidean SMT problem in
Rd, d ≥ 3. The problem remains unsolvable by exact methods for d ≥ 3 even if
n = 4, or if the FST of SMT (T ) is known.

The approximation scheme for the Euclidean SMT problem in Rd, d ≥ 2,
already briefly mentioned in Subsection 2.1, is quite slow and practical only
for n ≤ 12 [15]. Improved versions [6, 7] are still slow but work for n ≤ 18.
Since the approximation scheme and (more importantly) heuristics based on the
approximation scheme will be used to find good solutions for small subsets of
terminals, a brief description is given here.

The approximation scheme generates all FSTs with n terminals. For each
FST, it approximates its unique, possibly degenerate, RMT.

3.1 Generation of FSTs

There is only one FST for T3. Assume that terminals of T are labeled {t1, t2, ..., tk}.
Let Tk = {t1, t2, ..., tk} for any k, 3 ≤ k ≤ n. FSTs of Tk, 3 < k ≤ n, are con-
structed from FSTs of Tk−1. Let Tk−1 denote one of the f(k− 1) FSTs of Tk−1.
It has k− 3 Steiner points sn+1, sn+2, . . . , sn+k−3 and 2k− 5 edges. Let sn+k−2
denote the Steiner point incident with tk in every FST of Tk. Create 2k−5 FSTs
of Tk by inserting sn+k−2 into every edge of Tk−1. By applying this expansion
procedure to every FST of Tk−1, every FST of Tk is generated exactly once. An
example showing the generation of 3 FSTs of T4 by expanding the unique FST
of T3 is shown in Fig. 3.

Fig. 3. FSTs of T4 obtained by connecting t4 to either of the edges from the unique
FST of T3.

3.2 Numerical Optimization for a Given FST

Given an FST Tn, arbitrary initial positions are assigned to its n − 2 Steiner
points. The positions of Steiner points are recomputed iteratively so that the
total length of the tree is reduced until an appropriately chosen threshold is
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reached. In order to be able to distinguish between locations of Steiner points
in consecutive iterations, let vij denote the location of tj , j = 1, 2, . . . , n, and sj ,

j = n+1, n+2, . . . , 2n−2, before the i-th iteration, i ≥ 1. Note that v
(i)
j = v

(i+1)
j

for all j = 1, 2, . . . , n, and for all i ≥ 1.
Consider the system of n− 2 equations with n− 2 unknown (corresponding

to the locations of Steiner points)∑
vijv

i
l∈Tn

vi+1
j − vi+1

l

||vijvil ||
= 0, j = n+ 1, n+ 2, ..., 2n− 2 (7)

where vijv
i
l denotes the edge between the Steiner point vij and a terminal or

Steiner point vil
When (7) is solved in the i-th iteration, the new locations of Steiner points

are used to set up the next system of equations which is solved again in the
(i+1)-th iteration. It can be shown that the locations of Steiner points converge
to the unique, possible degenerate, RMT [15].

The numerical optimization terminates if all pairs of incident edges meet at
Steiner points at angles within the interval [2π/3− ε, 2π/3 + ε] for an arbitrarily
small constant ε > 0. The reader is referred to [12] for the justification that a
good approximation on the angles gives a good approximation of the length.

4 Heuristics

The Euclidean SMT heuristics in Rd, d ≥ 3, suggested in this paper are modifica-
tions of the well known O(n log n) heuristic in R2 [13, 19]. While these heuristics
also work in R2, they do not perform as well as specialized 2-dimensional heuris-
tics. This is in particular due to the fact that there are no fast exact algorithms
for finding Euclidean SMTs for small sets of terminals.

Consider a k-simplex σ, 1 ≤ k ≤ d, in Rd on a subset Tσ of k + 1 terminals
of T and the subgraph of MST (T ) induced by Tσ. If connected, this subgraph
is an MST for Tσ and is denoted MSTσ. MST (T ) is then said to cover σ.

Consider a d-sausage Sm, m > 1 in Rd on a subset TSm
of d + m terminals

of T and the subgraph of MST (T ) induced by TSm
. If connected, this subgraph

is an MST for TSm and is denoted MSTSm . MST (T ) is then said to cover Sm.
Let STσ denote a low cost Steiner tree spanning Tσ and let γσ = ||STσ||/||MSTσ||.

Finally, let SMTσ denote the SMT for Tσ. Define STSm
, γSm

and SMTSm
in a

similar way. The heuristic has the following four stages.

• For every covered k-simplex σ, k = 1, 2, . . . , d, 1 ≤ k ≤ d, in DT (T ),
place a low cost Steiner tree ST (Tσ) spanning Tσ on a priority queue H
ordered by non-decreasing γσ. Ties are broken by non-decreasing |Tσ| and,
if necessary, by non-decreasing ||ST (Tσ)||, see Section 5.

• For every maximal, covered d-sausage Sm, d < m ≤ n, place a low
cost Steiner tree ST (TSm

) spanning TSm
on the priority queue H ordered

by non-decreasing γSm
. Ties are broken by non-decreasing |TSm

| and, if
necessary, by non-decreasing ||ST (TSm)||, see Section 6.
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Fig. 4. Number of covered k-simplices for 1000 randomly generated points, 1 ≤ k ≤ d.
The bottom part shows k = 1, then k = 2, and so on.

• Concatenation: Create a Steiner forest SF (T ) (initially with no line seg-
ments). Extract Steiner trees from the priority queue H and add them one
by one to SF (T ) unless a cycle is created, see Subsection 7.1.

• Fine tuning: Extend the topology of SF (T ) to a FST by attaching each
terminal of degree b, b ≥ 2, to one of the b − 1 appropriately connected
Steiner points, see Subsection 7.2. Apply the numerical optimization method
to obtain the RMT for this FST, see Subsection 3.2.

In order to justify the importance of covered d-simplices and d-sausages,
consider the terminals T shown in Fig. 5. DT (T ) and MST (T ) are indicated on
the left. In particular, 2-simplex σ with Tσ = {ti, tj , tk} is in DT (T ) but it is
not covered. The Steiner ratio γβ will be smaller than any other Steiner ratio
of 2-simplices in this DT (T ). However, the inclusion of SMTσ into the overall
heuristic solution for T (right) would result in a very bad solution.

Fig. 5. MST and a poor Steiner tree resulting from using RMTs of uncovered simplices.
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Regretfully, covered d-simplices and covered d-sausages become less and less
frequent as d grows. Hence, relatively few Steiner trees end up in the priority
queue H.

5 Low Cost Steiner Trees of Covered k-Simplices

In this section the problem of finding a low cost non-degenerate Steiner tree
ST (Tσ) for a covered k-simplex σ, 1 ≤ k ≤ d, is addressed. It is of course impor-
tant that the determination of STσ is fast as such trees have to be determined
for many k-simplices. Assume that the terminals of Tσ have been relabeled to
t1, t2, . . . , tk+1. This ordering can for example be inherited from the ordering of
terminals in T . Let Tj = {t1, t2, . . . , tj}, j = 1, 2, . . . , k + 1.

If k = 1, then σ is a 1-simplex with 2 terminals. In this case ST (Tσ) =
SMTσ = MSTσ. Add ST (Tσ) to the priority queue H. Note that its Steiner
ratio is 1 so these edges will be at the bottom of H.

If k = 2, then σ is a 2-simplex with three terminals. Since the terminals of
Tσ define a unique plane (unless they are collinear), ST (Tσ) = SMTα can be
found in O(1) time using Melzak construction for FSTs in R2 [10]. Add ST (Tσ)
to the priority queue H if it is non-degenerate.

In the remainder of this section it is assumed that σ is a k-simplex, k ≥ 3,
and therefore d ≥ 3. Three different methods of obtaining low cost ST (Tσ) are
described.

5.1 Numerical Optimization (NO)

If d is not too big, say d ≤ 6, then the approximation scheme (Section 3) will
yield ST (Tσ) such that ||ST (Tσ)|| ≈ ||SMTσ||. For any FST Tj with j terminals,
3 ≤ j ≤ k, of a k-simplex σ, the approximation scheme generates 2j − 3 new
FSTs (see Fig. 6, left). This is repeated until FSTs Tk+1 with k + 1 terminals
are generated. If k-simplices are processed bottom-up, repeated generations of
FSTs of subsets of Tσ can be avoided.

The numerical optimization (Subsection 3.2) is applied to each of these f(k+
1) FSTs (Subsection 2.1). The best RMT found approximates SMTσ. It is added
to the priority queue H if it is non-degenerate.

5.2 Restricted Numerical Optimization (RNO)

For any FST Tj with the j terminals, 3 ≤ j ≤ k, of a k-simplex σ, the approach
described in Subsection 5.1 generates 2j−3 new FSTs. In order to speed up this
process, the RMT of Tj is determined. The Steiner point s in this RMT closest
to tj+1 is identified. Tj is expanded only in three ways by splitting the edges
incident with s (instead of splitting all 2j − 3 edges) as shown in Fig. 6 (right).
For each of these three FSTs, their RMTs are determined. If j = k, the shortest
of these RMTs is added to the priority queue H if it is non-degenerate. If j < k,
the FST of the shortest RMT is then the only one that is expanded in the next
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iteration. The price for reducing the number of determined RMTs is of course
the quality of ST (Tσ).

Fig. 6. Numerical optimization (left) and restricted numerical optimization (right).

5.3 Simplex Partitioning (SP)

Let σ′ and σ′′ be two faces of Tσ, Tσ′∪Tσ′′ = Tσ, Tσ′∩Tσ′′ = ∅, |Tσ′ |, |Tσ′′ | ≥ 2 as
shown in Fig. 7. Let c′′ denote the centroid of Tσ′′ . Determine a low cost Steiner
tree ST (Tσ′∪c′′) and let s1 denote its Steiner point adjacent to c′′. Construct
a low cost Steiner tree ST (Tσ′′∪s1). Let s2 be the Steiner point adjacent to
s1. Create a Steiner tree ST (Tσ) by replacing c′′ (and its incident edge) in
ST (Tσ′∪c′′) by ST (Tσ′′∪s2). Apply the numerical optimization (Subsection 3.2)
to ST (Tσ) for the additional length reduction. Determine another Steiner tree
by swapping σ′ and σ′′. Repeat this for all such pairs of σ′ and σ′′ and add the
shortest encountered Steiner tree to the priority queue H if it is non-degenerate.

Fig. 7. Partitioning of a covered 3-simplex in R3 using two edges.
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6 Low Cost Steiner Trees for Covered d-Sausages

It has been observed [16], for d = 3 in particular, that regular d-sausages have
very low Steiner ratios. In fact, their ratios are considerably less than Steiner
ratios for regular d-simplices in Rd. Furthermore, the Steiner ratio decreases as
the number of terminals in regular d-sausages increases. Fig. 8 shows a portion
of the Euclidean SMT of an almost regular 3-sausages with terminals placed on
an α-helix at positions corresponding to Cα atoms of proteins.

Fig. 8. Regular 3-sausage in R3, its Euclidean SMT in blue, and MST in gray (3 MST
paths meet at the end of the helix).

The notion of covered d-sausages, however, seems too weak to capture all d-
sausages that could be useful when constructing low-cost Euclidean Steiner trees.
This in particular becomes a problem as d ≥ 3. On the other hand, dropping
the requirement that d-sausages must be covered can result in the selection of
RMTs with small ratio but with large length as already pointed out in Fig. 5.

7 Low Cost Steiner Tree for T

Once non-degenerate low cost Steiner trees for selected faces of d-simplices and
for selected d-sausages have been stored in the priority queue H, the Steiner
tree spanning all terminals of T is constructed. This is achieved by the greedy
concatenation of Steiner trees stored in H and by subsequent fine tuning.

7.1 Concatenation

Non-degenerate Steiner trees stored in the priority queue H are extracted one
by one and added to the Steiner forest SF (T ) unless they close a cycle. Initially
SF (T ) has no line segments. The construction of SF (T ) is essentially the same
as when constructing MST using Kruskal’s algorithm [2]. Note that SF (T ) will
be connected as H contains the edges of MST (T ). The Steiner ratio of these
edges is 1. So, if needed, they will be added to SF (T ) just before H is emptied.
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7.2 Fine Tuning

The tree SF (T ) obtained by the greedy concatenation of smaller Steiner trees
may have terminals of degree higher than 1. Consider a terminal t ∈ T and
assume that it is incident with δ edges, δ > 1. Let v1, v2, . . . , vδ denote the
terminals and Steiner points adjacent to t. Assume that the angle 6 vitvj is the
smallest among all angles at t between pairs of points adjacent to t. Insert a
new Steiner point s adjacent to t, vi and vj . Remove vi and vj from the list of
points adjacent to t and add s to it. Repeat until t is adjacent to one point.
The resulting topology is an FST. Its RMT can be obtained by the numerical
optimization algorithm, see Section 5.1.

Fig. 9. Steiner points are added to all terminals with degree higher than 1 and the
RMT is calculated.

8 Computational Results

Delaunay tessellation DT (T ) is determined in the preprocessing phase using the
Qhull software package [1]. The implementation is based on the lifting algo-
rithm [5]. Terminals in Rd are lifted to a paraboloid in Rd+1 by adding the sum
of the squares of their coordinates as the additional coordinate. The algorithm
then computes the convex hull of the lifted terminals, and projects the lower
convex hull back to Rd.

Once DT (T ) is given, MST (T ) is obtained using Kruskals minimum span-
ning tree algorithm [2]. Since the computation of DT (T ) and MST (T ) is in-
significant compared to the generation of low cost Steiner trees, computational
times for obtaining DT (T ) and MST (T ) are not given below.

All results presented in this paper were achieved using a Lenovo S430 laptop
with an Intel Core i5-3210M CPU @ 2.50GHz, and with 4GB RAM.

8.1 Steiner Trees for Selected k-Simplices

Fig. 10 shows average Steiner ratios (left) and CPU-times (right) for low cost
Steiner trees of 500 randomly selected d-simplices in DT (T ) using numerical
optimization (NO) (Subsection 5.1), restricted numerical optimization (RNO)
(Subsection 5.2), and simplex partitioning (SP) (Subsection 5.3) in Rd, d =
2, 3, 4, 5, 6. See also Table 2 for the numerical data.
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For d = 2, 3, there is no difference between NO and RNO. SP runs much
faster than both NO and RNO for d = 2, 3, with only a slightly worse Steiner
ratio for d = 3. For d = 4, 5, 6, RNO is much faster than NO, although with
somewhat worse Steiner ratios. SP achieves quite good average ratios, but it is
slower than NO for d = 4, 5. For d = 6 however, SP is faster, and it appears to
gain an even greater advantage over NO for larger point sets (d > 7), which may
be beneficial when considering d-sausages (Section 6).
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Fig. 10. Avarage Steiner ratios (left) and CPU-times (right) of NO (red), RNO (blue)
and SP (green) for Steiner trees of d-simplices in Rd, d = 2, 3, 4, 5, 6.

8.2 Steiner Trees for Selected d-Sausages

Fig. 11 shows Steiner ratios and CPU times achieved by the heuristic with and
without including selected d-sausages in the concatenation. See also Table 3 in
the Appendix for the numerical data.
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Fig. 11. Average Steiner ratios (left) and CPU-times (right) achieved for a set of 20
problem instances with 500 terminals in Rd, d = 2, 3, 4, 5, 6, with (blue) and without
(red) including Steiner trees of covered d-sausages.

As can be seen in Fig. 12, the number of covered d-sausages decreases rapidly
with the length of 3-sausages. So does the number of Steiner trees of covered
3-sausages that are included in the best solution.
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Fig. 12. Number of covered 3-sausages Sk, k = 1 . . . 9, for a random instance in R3

with n = 104 (red bars), and number of Steiner trees of 3-sausages in the concatenated
solution (blue bars).

8.3 Concatenation

The greedy concatenation is very straightforward and easy to implement. How-
ever, as has been realized in the 2-dimensional case [19], the inclusion of covered
d-simplices and covered d-sausages will result in solutions whose topologies are
very close to the topology of the Euclidean MST. In order to address this prob-
lem, the greedy concatenation was modified in the following way. A low cost ST
of an uncovered d-simplex of DT (T ) is placed in the front of the priority queue
no matter what its length is and the concatenation is applied as previously. This
is repeated to all uncovered d-simplices. The lowest of the STs is compared with
the best tree found by using covered d-simplices and d-sausages. Fig. 13 shows
the Steiner ratio improved (left) and how it affected CPU times. See also Table 4
in the Appendix for the numerical data.
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Fig. 13. Steiner ratios (left) and CPU times (right) obtained by concatenation of cov-
ered d-simplices and d-sausages (red) and by the extended concatenation (blue). The
figures show the average of a computation for 20 problem instances with 200 terminals
in Rd, d = 2, 3, 4, 5, 6.
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8.4 Fine Tuning

By adding extra Steiner points and by fine tuning the tree (Section 7.2), we
obtain a noticeable improvement in Steiner ratio with only minimal impact on
the running time, as seen in Fig. 14. See also Table 5 for the numerical data.
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Fig. 14. Average Steiner ratios (left) obtained for a set of 20 problem instances with
500 terminals in Rd, d = 2, 3, 4, 5, 6, with (blue) and without (red) fine tuning, and
average number of non-degenerate Steiner points (right) with (red) and without (blue)
fine tuning.

8.5 Overall Performance

Fig. 15 (left) shows the Steiner ratio achieved by the heuristic for problem in-
stances of varying dimension d = 2, 3, 4, 5, 6. RNO is used for determining low
cost STs for the covered simplices and d-sausages (Section 6), and fine tuning
is applied afterwards. Fig. 15 (right) shows a comparison of the CPU times,
which increase with both dimension and set size. See Table 6 and Table 7 in the
Appendix for the numerical data.

Table 1 shows the maximum size n of input instances, that the heuristic
is able to handle in ' 60 seconds for d = 2, 3, 4, 5, 6. Again we see that the
maximum input size decreases as the dimension increases.

d 2 3 4 5 6

n 150,000 80,000 41,000 15,000 3,800

ρ 0.9705 0.9534 0.9416 0.9328 0.9232

Table 1. Steiner ratios achieved for the maximum point sets in dimension d = 2 . . . 6,
for which the heuristic returns a result within ' 60 seconds.

Fig. 16 shows average Steiner ratios and average CPU time for the eSteiner3d
benchmark instances [3] (grouped by the number of terminals). Lengths of the
best solutions found by the heuristic (using RNO and fine tuning) can be seen
in the Appendix in Tables 8, 9, 10, 11 and 12.
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Fig. 15. Steiner ratios (left) and CPU times (right) for point sets of varying size in d
= 2. . . 6.

10 20 30 40 50 60 70 80 90 100

250

50
0

1000

10000

0.950

0.952

0.954

0.956

n

ρ

10 20 3
0

4
0

50 60 70 80 90 100

2
50

500

1000

10000

10−2

10−1

100

101

n

t (sec.)

Fig. 16. Average Steiner ratios (left) and CPU times (right) for eSteiner3d benchmark
instances.

Fig. 17 shows Steiner ratios and CPU times for the protein3d benchmark
instances [3]. The backbone atoms of proteins form long chains. Each backbone
atom (apart from the first and the last) is bonded with its predecessor, successor
and a third atom or molecule (side chain). The atoms are placed such that their
bonds (edges) tend to meet at 120o. Hence, Steiner ratios for proteins should be
close to 1. We also tested these instances with backbone atoms removed. Steiner
points should than be places at positions corresponding to the removed atoms
and the Steiner ratio should be well below 1. This indeed is the case. See Table 13
in the Appendix for the numerical data.

9 Conclusions

A family of heuristics for the d-dimensional Steiner tree problem, d ≥ 2, has
been presented. Delaunay tessellations are used to identify (covered) d-simplices
and d-sausages. Low cost STs are then determined for the terminals in these
d-simplices and d-sausages. Both Steiner ratio and CPU time seem to be quite
promising and fairly large problems in d-dimensional spaces can be solved.
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Fig. 17. Average Steiner ratios (left) and CPU times (right) for protein3d benchmark
instances. Red shows the protein instances with some atoms removed, while blue shows
the instances with all atoms included.

One of the interesting open problems is to extend the approach so it identifies
all covered d-sausages. Our current implementation finds sequences of covered d-
simplices stopping when reaching an uncovered d-simplex. However, it is possible
to have a covered d-sausage with the intermediate d-simplices being uncovered.

It would also be interesting to find another way of identifying good d-sausages
and d-simplices without leaning too much on the notion of being covered. Bot-
tleneck distances [18] may prove useful in this context.
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A Tables with Numerical Result

d 2 3 4 5 6

tNO (sec.) 0.000017995 0.00016655 0.00161072 0.0182218 0.261829

ρNO 0.973217 0.94452 0.940643 0.922053 0.915022

tRNO (sec.) 0.000018374 0.00016942 0.00044427 0.00092436 0.0017372

ρRNO 0.972999 0.944516 0.942761 0.927888 0.92316

tSP (sec.) 1.69027e-06 2.96765e-05 0.00357474 0.0230367 0.104729

ρSP 0.972601 0.945469 0.941092 0.92249 0.915417

Table 2. Average Steiner ratios and CPU-times of NO, RNO and SP for Steiner trees
of d-simplices in Rd, d = 2, 3, 4, 5, 6. See also Fig. 10.

d 2 3 4 5 6

t (sec.) 0.0117 0.0710 0.3226 1.2075 4.9750

ρ 0.9739 0.9587 0.9483 0.9407 0.9336

t∗ (sec.) 0.1663 0.3806 0.7997 1.9833 6.4000

ρ∗ 0.9707 0.9574 0.9477 0.9403 0.9334

Table 3. Average Steiner ratios and CPU-times achieved for a set of 20 problem
instances with 500 terminals in Rd, d = 2, 3, 4, 5, 6, with (*) and without including
Steiner trees of covered d-sausages. See also Fig. 11.
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d 2 3 4 5 6

t (sec.) 0.0854 0.2138 0.4324 1.0940 3.0083

ρ 0.9711 0.9527 0.9389 0.9310 0.9192

t∗ (sec.) 0.1254 0.5418 2.8500 18.950 125.95

ρ∗ 0.9693 0.9507 0.9360 0.9299 0.9185

Table 4. Average Steiner ratios and CPU times obtained by concatenation of covered
d-simplices and d-sausages and by the extended concatenation (*). The averages are
computed for a set of 20 problem instances with 200 terminals in Rd, d = 2, 3, 4, 5, 6.
See also Fig. 13.

d 2 3 4 5 6

ρ 0.973864 0.958668 0.948276 0.940723 0.933587

#S 149.05 197.75 223.85 240.25 256.9

ρ∗ 0.97082 0.953568 0.941181 0.93069 0.921695

#S∗ 206.2 306.55 368.95 412.05 440.35

Table 5. Average Steiner ratios and CPU times obtained by the heuristic with (*) and
without using fine tuning after the concatenation. The averages are computed for a set
of 20 problem instances with 500 terminals in Rd, d = 2, 3, 4, 5, 6. See also Fig. 14.
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n\d 2 3 4 5 6

50 0.959753 0.958583 0.948836 0.920395 0.921987

100 0.973755 0.956553 0.934118 0.928026 0.915472

150 0.974232 0.955526 0.93932 0.929854 0.929356

200 0.969872 0.958149 0.946037 0.931566 0.923916

250 0.969939 0.955209 0.940547 0.927293 0.928176

300 0.974192 0.953245 0.937974 0.927394 0.917285

350 0.968482 0.945841 0.9431 0.929571 0.921847

400 0.973963 0.956813 0.941372 0.936574 0.91767

450 0.971593 0.951349 0.940501 0.931255 0.9202

500 0.969242 0.954807 0.941911 0.931335 0.921126

550 0.971028 0.955235 0.942882 0.928727 0.921874

600 0.970836 0.955378 0.939663 0.930282 0.919092

650 0.968217 0.954189 0.940568 0.932296 0.922853

700 0.969926 0.949622 0.940952 0.929914 0.926253

750 0.968695 0.953336 0.942529 0.929513 0.924011

800 0.969736 0.952388 0.944168 0.932087 0.921099

850 0.970163 0.954022 0.939446 0.929722 0.921554

900 0.969251 0.954192 0.9401 0.934886 0.923131

950 0.970512 0.952332 0.937763 0.928871 0.92218

1000 0.969202 0.952428 0.942194 0.933819 0.924703

1050 0.972873 0.952946 0.940718 0.934263 0.921455

1100 0.967925 0.955391 0.943399 0.933176 0.924871

1150 0.969082 0.955615 0.939337 0.932134 0.92587

1200 0.969532 0.951863 0.940609 0.933144 0.92277

1250 0.972876 0.954515 0.940615 0.93301 0.927126

1300 0.969717 0.952274 0.940913 0.93425 0.92542

1350 0.968233 0.954433 0.937197 0.930228 0.923208

1400 0.971101 0.952076 0.941855 0.929669 0.92463

1450 0.971477 0.951313 0.940887 0.930326 0.924176

1500 0.969229 0.953547 0.940055 0.931676 0.923968

Table 6. Steiner ratios for point sets of varying size and d = 2, 3, ..., 6. See also Fig. 15
(left).
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n\d 2 3 4 5 6

50 0.0189036 0.0621118 0.126582 0.4 0.714286

100 0.0442478 0.0719424 0.169492 0.588235 1.83333

150 0.0518135 0.120482 0.37037 0.5 1

200 0.106383 0.144928 0.30303 1.57143 2.5

250 0.0840336 0.16129 0.416667 1.11111 2.75

300 0.114943 0.3125 0.5 1.11111 5.5

350 0.172414 0.277778 0.555556 1.57143 3.66667

400 0.151515 0.333333 0.555556 2.2 5

450 0.166667 0.3125 0.555556 2 6.5

500 0.172414 0.4 0.833333 2 6

550 0.188679 0.454545 0.833333 2 6.5

600 0.227273 0.526316 1 2.2 7.5

650 0.217391 0.47619 0.909091 2.5 9.5

700 0.217391 0.5 1.42857 2.75 9

750 0.294118 0.555556 1.22222 3 11

800 0.30303 0.714286 1.25 3.66667 11

850 0.322581 0.714286 1.375 3.66667 10

900 0.416667 0.833333 1.25 3 14

950 0.357143 0.909091 1.57143 4.33333 13

1000 0.37037 0.714286 1.42857 4.33333 12

1050 0.357143 0.833333 1.57143 4 15

1100 0.384615 1 1.83333 5 14

1150 0.4 0.769231 1.83333 4 16

1200 0.47619 0.833333 2 4.66667 16

1250 0.416667 0.714286 1.83333 5 16

1300 0.434783 1.11111 2.4 4.33333 18

1350 0.454545 1.25 2.4 6 18

1400 0.526316 1.11111 2.5 5.5 20

1450 0.5 1.11111 2.4 6 20

1500 0.5 1 2 5.5 22

Table 7. CPU times (sec) for point sets of varying size and d = 2, 3, ..., 6. See also
Fig. 15 (right).



XXII

Name n t (sec.) ||MST || ||SMT || ρ

estein10-00 10 0.0193237 3.33254 3.21346 0.964269

estein10-01 10 0.00152381 3.30121 3.10614 0.940908

estein10-02 10 0.00606061 3.17651 3.00851 0.947111

estein10-03 10 0.00467836 3.03209 2.85374 0.941178

estein10-04 10 0.013468 3.06878 2.95705 0.96359

estein10-05 10 0.0142857 3.41494 3.14027 0.91957

estein10-06 10 0.00508259 3.53768 3.27921 0.92694

estein10-07 10 0.0060698 3.10757 2.94078 0.946328

estein10-08 10 0.00567376 2.7329 2.62509 0.960551

estein10-09 10 0.00440529 3.1246 2.97064 0.950725

estein10-10 10 0.00715564 3.26161 3.1957 0.979792

estein10-11 10 0.00792079 3.07887 2.91954 0.948249

estein10-12 10 0.00370714 2.90027 2.82079 0.972596

estein10-13 10 0.00598802 3.21875 3.13832 0.975014

estein10-14 10 0.00459242 3.01279 2.92783 0.9718

estein20-00 20 0.0597015 4.97097 4.64244 0.933911

estein20-01 20 0.0336134 4.6131 4.49341 0.974054

estein20-02 20 0.0205128 4.94092 4.62116 0.935282

estein20-03 20 0.0130293 4.57347 4.40717 0.963637

estein20-04 20 0.0101781 4.93447 4.77452 0.967586

estein20-05 20 0.0264901 5.38111 5.24457 0.974626

estein20-06 20 0.0156863 4.81786 4.6458 0.964287

estein20-07 20 0.019802 5.20534 4.89915 0.941179

estein20-08 20 0.0210526 5.06873 4.84983 0.956812

estein20-09 20 0.0268456 4.85265 4.69029 0.966543

estein20-10 20 0.0186047 4.77163 4.55506 0.954612

estein20-11 20 0.0421053 4.60359 4.33363 0.941359

estein20-12 20 0.0325203 5.13724 4.84463 0.943041

estein20-13 20 0.031746 5.58437 5.19161 0.929668

estein20-14 20 0.0118694 4.91812 4.69534 0.954703

estein30-00 30 0.0470588 7.01432 6.67442 0.951542

estein30-01 30 0.0228571 6.65878 6.48397 0.973748

estein30-02 30 0.0481928 6.47612 6.15346 0.950176

estein30-03 30 0.0283688 6.71635 6.4346 0.95805

estein30-04 30 0.016129 6.95497 6.53684 0.93988

estein30-05 30 0.0408163 6.47014 6.35907 0.982833

estein30-06 30 0.028777 7.25329 6.86687 0.946725

estein30-07 30 0.0180995 6.15538 5.91064 0.960239

estein30-08 30 0.0264901 6.89295 6.56657 0.95265

estein30-09 30 0.0330579 6.63351 6.28676 0.947728

estein30-10 30 0.0232558 7.02758 6.80236 0.967953

estein30-11 30 0.0350877 6.57286 6.34189 0.96486

estein30-12 30 0.0140351 6.85188 6.46326 0.943284

estein30-13 30 0.0174672 6.33981 6.07511 0.958249

estein30-14 30 0.117647 7.0321 6.70007 0.952784

Table 8. Results for the eSteiner3d benchmark instances (n = 10, 20, 30), see Fig. 16
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Name n t (sec.) ||MST || ||SMT || ρ

estein40-00 40 0.0216216 7.66669 7.37741 0.962268

estein40-01 40 0.0272109 7.76159 7.48703 0.964626

estein40-02 40 0.0344828 8.62943 8.24817 0.955818

estein40-03 40 0.0310078 7.44513 7.12007 0.956341

estein40-04 40 0.0285714 8.04469 7.73211 0.961145

estein40-05 40 0.0181818 8.65937 8.21838 0.949074

estein40-06 40 0.0228571 8.16906 7.79646 0.954389

estein40-07 40 0.0412371 8.47427 8.1179 0.957947

estein40-08 40 0.0263158 8.96284 8.42385 0.939864

estein40-09 40 0.0139373 8.98378 8.58169 0.955243

estein40-10 40 0.034188 8.03186 7.70493 0.959296

estein40-11 40 0.0444444 7.6789 7.3721 0.960047

estein40-12 40 0.0526316 8.75273 8.27936 0.945918

estein40-13 40 0.0655738 8.1323 7.68032 0.944422

estein40-14 40 0.0347826 8.00802 7.53441 0.940858

estein50-00 50 0.028777 9.46093 9.02019 0.953415

estein50-01 50 0.0421053 9.50813 9.07295 0.95423

estein50-02 50 0.0421053 9.60233 9.066 0.944146

estein50-03 50 0.037037 9.06019 8.69446 0.959633

estein50-04 50 0.0714286 9.23986 8.85541 0.958393

estein50-05 50 0.0493827 9.48477 8.98387 0.947189

estein50-06 50 0.0357143 9.287 8.82325 0.950065

estein50-07 50 0.0357143 9.15102 8.74277 0.955387

estein50-08 50 0.032 8.6114 8.26943 0.960288

estein50-09 50 0.057971 8.96103 8.47866 0.94617

estein50-10 50 0.0634921 9.72393 9.25088 0.951352

estein50-11 50 0.0597015 8.99159 8.69897 0.967457

estein50-12 50 0.0344828 9.20068 8.74622 0.950605

estein50-13 50 0.0298507 10.3316 9.90477 0.958683

estein50-14 50 0.057971 9.87496 9.40119 0.952023

estein60-00 60 0.0625 10.1596 9.7025 0.955007

estein60-01 60 0.0283688 10.5666 9.98463 0.944924

estein60-02 60 0.0408163 10.9501 10.2708 0.937966

estein60-03 60 0.0526316 10.186 9.79076 0.961201

estein60-04 60 0.0434783 11.161 10.7229 0.960748

estein60-05 60 0.08 10.6887 10.3223 0.965725

estein60-06 60 0.0588235 11.6261 11.0394 0.949539

estein60-07 60 0.043956 11.0703 10.5441 0.952467

estein60-08 60 0.0487805 10.6514 10.1254 0.950617

estein60-09 60 0.0869565 10.6696 10.1463 0.950959

estein60-10 60 0.057971 10.3296 9.80177 0.948898

estein60-11 60 0.0769231 11.5656 11.1258 0.961977

estein60-12 60 0.040404 11.0637 10.665 0.963971

estein60-13 60 0.0930233 10.4158 9.99296 0.959402

estein60-14 60 0.0512821 11.3753 10.8412 0.953045

Table 9. Results for the eSteiner3d benchmark instances (n = 40, 50, 60), see Fig. 16
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Name n t (sec.) ||MST || ||SMT || ρ

estein70-00 70 0.097561 11.7109 11.0698 0.945261

estein70-01 70 0.0444444 12.0846 11.5269 0.95385

estein70-02 70 0.0555556 11.8165 11.3584 0.961232

estein70-03 70 0.0689655 11.8165 11.2597 0.95288

estein70-04 70 0.0689655 11.826 11.3189 0.957121

estein70-05 70 0.0526316 11.9274 11.3266 0.94963

estein70-06 70 0.056338 11.8306 11.2176 0.948184

estein70-07 70 0.045977 11.8438 11.222 0.947503

estein70-08 70 0.0449438 11.7712 11.1607 0.948136

estein70-09 70 0.0655738 12.1782 11.5322 0.946954

estein70-10 70 0.047619 11.9779 11.3426 0.946958

estein70-11 70 0.0754717 11.9486 11.3531 0.950162

estein70-12 70 0.0481928 11.2702 10.8418 0.961988

estein70-13 70 0.043956 12.1057 11.5076 0.950588

estein70-14 70 0.108108 12.0685 11.4652 0.950009

estein80-00 80 0.057971 13.238 12.5689 0.949461

estein80-01 80 0.0909091 12.8044 12.1268 0.947082

estein80-02 80 0.0666667 12.6707 12.0772 0.953161

estein80-03 80 0.08 11.8787 11.2431 0.946488

estein80-04 80 0.0533333 13.3848 12.7056 0.949254

estein80-05 80 0.0816327 13.7129 13.013 0.948959

estein80-06 80 0.040404 13.9391 13.2242 0.948713

estein80-07 80 0.0512821 12.8821 12.3697 0.960221

estein80-08 80 0.0689655 13.6495 12.8779 0.943477

estein80-09 80 0.0701754 13.2128 12.5116 0.946934

estein80-10 80 0.1 12.7368 12.0223 0.943903

estein80-11 80 0.0540541 12.2738 11.7939 0.960899

estein80-12 80 0.0571429 13.6879 12.9577 0.946653

estein80-13 80 0.0434783 13.4411 12.8207 0.953843

estein80-14 80 0.0526316 13.2343 12.6927 0.959078

estein90-00 90 0.043956 14.0648 13.4028 0.952934

estein90-01 90 0.0625 13.9575 13.1991 0.945663

estein90-02 90 0.0689655 14.1526 13.4659 0.951481

estein90-03 90 0.105263 13.1386 12.6454 0.962462

estein90-04 90 0.125 13.7569 13.0934 0.951766

estein90-05 90 0.0769231 13.8111 13.1283 0.950563

estein90-06 90 0.0816327 13.7461 13.0909 0.952339

estein90-07 90 0.0869565 14.3591 13.6366 0.949684

estein90-08 90 0.0909091 13.2578 12.6887 0.957069

estein90-09 90 0.0634921 14.1914 13.6027 0.958513

estein90-10 90 0.0754717 14.0389 13.3868 0.953555

estein90-11 90 0.111111 14.0244 13.2634 0.945734

estein90-12 90 0.108108 14.0708 13.4523 0.956048

estein90-13 90 0.0655738 13.4268 12.7457 0.949279

estein90-14 90 0.0816327 14.3308 13.6441 0.952081

Table 10. Results for the eSteiner3d benchmark instances (n = 70, 80, 90), see Fig. 16
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Name n t (sec.) ||MST || ||SMT || ρ

estein100-00 100 0.0519481 15.1935 14.5528 0.957833

estein100-01 100 0.0816327 15.0617 14.3938 0.955658

estein100-02 100 0.102564 15.4134 14.599 0.947164

estein100-03 100 0.0588235 15.8369 15.19 0.959155

estein100-04 100 0.0625 15.8219 15.023 0.949506

estein100-05 100 0.0677966 14.4905 13.7671 0.950077

estein100-06 100 0.108108 15.5273 14.6334 0.94243

estein100-07 100 0.114286 15.8046 15.1401 0.957954

estein100-08 100 0.0952381 15.4278 14.7947 0.958961

estein100-09 100 0.0714286 15.3972 14.7208 0.956066

estein100-10 100 0.0952381 15.475 14.7741 0.954708

estein100-11 100 0.0727273 15.2883 14.6879 0.960725

estein100-12 100 0.0571429 14.9266 14.2796 0.956653

estein100-13 100 0.105263 14.8634 14.1804 0.954045

estein100-14 100 0.105263 15.7385 14.9617 0.950646

estein250-00 250 0.148148 26.9975 25.7201 0.952685

estein250-01 250 0.285714 27.4092 26.1538 0.954197

estein250-02 250 0.235294 26.6891 25.4058 0.951916

estein250-03 250 0.266667 27.1691 25.9614 0.955547

estein250-04 250 0.173913 26.9568 25.7959 0.956936

estein250-05 250 0.173913 27.8833 26.6886 0.957152

estein250-06 250 0.2 27.5863 26.292 0.953081

estein250-07 250 0.142857 27.4988 26.2006 0.952789

estein250-08 250 0.222222 28.1783 26.8719 0.953635

estein250-09 250 0.190476 26.6414 25.5073 0.957429

estein250-10 250 0.235294 26.0041 24.7003 0.949864

estein250-11 250 0.222222 26.6477 25.3879 0.952726

estein250-12 250 0.25 27.0666 25.9204 0.957651

estein250-13 250 0.153846 27.3973 26.1502 0.95448

estein250-14 250 0.142857 27.4486 26.0707 0.949803

estein500-00 500 0.4 42.8324 40.8101 0.952787

estein500-01 500 0.444444 42.5191 40.5528 0.953753

estein500-02 500 0.444444 42.3945 40.3159 0.950971

estein500-03 500 0.333333 42.9536 40.9332 0.952963

estein500-04 500 0.4 42.3192 40.3893 0.954395

estein500-05 500 0.444444 42.9438 40.891 0.952196

estein500-06 500 0.4 41.9621 39.8969 0.950784

estein500-07 500 0.444444 42.0414 40.0701 0.953111

estein500-08 500 0.363636 42.7926 40.6453 0.949821

estein500-09 500 0.363636 41.7776 39.8347 0.953494

estein500-10 500 0.444444 41.3443 39.4336 0.953786

estein500-11 500 0.363636 42.9622 41.0086 0.954526

estein500-12 500 0.5 42.1053 40.2639 0.956267

estein500-13 500 0.363636 43.2336 40.9863 0.948018

estein500-14 500 0.4 42.446 40.4858 0.953819

Table 11. Results for the eSteiner3d benchmark instances (n = 100, 250, 500), see
Fig. 16



XXVI

Name n t(sec.) ||MST || ||SMT || ρ

estein1000-00 1000 0.666667 67.0264 63.955 0.954176

estein1000-01 1000 0.8 66.6223 63.447 0.952338

estein1000-02 1000 0.8 67.2279 64.1912 0.954831

estein1000-03 1000 1 66.8637 63.6157 0.951424

estein1000-04 1000 0.666667 66.8818 63.7223 0.95276

estein1000-05 1000 0.8 66.7787 63.5926 0.952289

estein1000-06 1000 1 66.9816 63.9016 0.954016

estein1000-07 1000 0.8 67.0887 64.0233 0.954308

estein1000-08 1000 0.8 66.8243 63.7318 0.953721

estein1000-09 1000 0.666667 66.7329 63.5733 0.952653

estein1000-10 1000 0.8 68.2402 64.935 0.951565

estein1000-11 1000 0.8 66.0117 63.0112 0.954547

estein1000-12 1000 0.666667 66.2443 63.2615 0.954974

estein1000-13 1000 0.8 67.8424 64.4772 0.950398

estein1000-14 1000 0.8 67.0087 63.73 0.951071

estein10000-0 10000 7 305.303 291.118 0.953538

Table 12. Results for the eSteiner3d benchmark instances (n = 1000, 10000), see
Fig. 16

Name n t (sec.) ||MST || ||SMT || ρ

1X0O all 1925 13 2391.62 2378.51 0.994516

1X0O 1121 0.667 2342.98 2170.23 0.926270

2JZC all 3170 21 3948.22 3925.48 0.994242

2JZC 1865 1 4001.87 3703.38 0.925412

3WCZ all 4808 33 5686.50 5653.67 0.994227

3WCZ 2829 1 5861.48 5406.89 0.922444

4OAA all 6230 36 7381.35 7341.65 0.994623

4OAA 3594 1.667 7528.47 6949.30 0.923070

Table 13. Results for the protein3d benchmark instances, see Fig. 17


