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Abstract. In this paper a novel generic way to model hop- or diameter-
constrained tree problems as integer linear programs is introduced. The
concept of layered graphs has gained widespread attention in the last few
years, since it exhibits significant computational advantages when com-
pared to previously available extended, but compact, formulations for
this type of problems. We derive a new extended formulation on a lay-
ered graph in which the underlying optimization problem can be modeled
as the Steiner arborescence problem with additional degree constraints.
The power of our new model is demonstrated on the Steiner Tree Problem
with Revenues, Budget and Hop Constraints, for which a branch-and-
cut algorithm has been implemented. Most of the instances available for
the DIMACS-challenge, including many previously unsolved ones, can
be solved to proven optimality within a time limit of 1000 seconds, most
of them within a few seconds only.

1 Introduction

In this work, we present a novel generic way to model hop- or diameter-constrained
tree problems as integer linear programs (ILPs). In this type of problems we typ-
ically search for a subtree of a given input graph G such that from a given root
node r to any other node of this subgraph, there exists a path containing at
most H edges (where H ≥ 2 is a given hop-limit). Our approach is based on
layered graphs, a concept which has gained widespread attention in the last few
years. On the one hand, layered graphs allow for significant improvements of
computing times when compared to previously available extended formulations
(see, [1]). On the other hand, they are also shown to theoretically dominate most
of the available extended formulations that model hop- or diameter-constraints.
Instead of modeling the problem on G, a layered graph is constructed such that
for each layer 1 ≤ h ≤ H , a copy of the nodes of G is established, and nodes
between two consecutive layers are connected whenever there exists a connection
between them in G (for more details, see Section 2). In the approaches from the
available literature, the underlying problem is then formulated as a Steiner ar-
borescence problem using arc variables on such obtained layered digraph. While



these formulations often provide very good LP-bounds (see, e.g. [1]), the number
of variables (which is O(H |E|)), often becomes prohibitive when the problem is
formulated on larger graphs, or when larger hop limitsH are considered. Instead,
our new formulation comprises only node variables on the layered graph (along
with node and arc variables on G). Whereas standard layered graph approaces
involve O(H |V |2) variables, our new model deals with O(H |V |+ |E|) variables.

We demonstrate the power of our new modeling approach on the Steiner
Tree Problem with Revenues, Budget and Hop Constraints (STPRBH) which
has been taken as part of the DIMACS Challenge. A branch-and-cut-algorithm
derived on our new formulation solves most of the instances from the DIMACS
Challenge to provable optimality in a short time (within a few seconds). This
includes many instances for which the optimal solution has been unknown. We
also provide results for the Hop Constrained Spanning Tree Problem (HCSpT)
studied by [1].

Our paper is structured as follows: In the remainder of this section, the prob-
lem definition of the STPRBH is given, together with a short literature overview.
In Section 2, a short review of layered graphs is followed by the presentation of
our generic new model together with some improvements. The proposed im-
provements include strengthening of valid inequalities, fixing/removing of vari-
ables and introduction of further valid inequalities. We also demonstrate how to
formulate the STPRBH and the HCSpT with our new model.

Section 3 contains a description of our algorithmic framework together with
obtained computational results. Section 4 concludes the work with a short sum-
mary and a discussion of future work. It points out a broader potential of the
proposed model.

It should be noted that this paper presents some preliminary results of an on-
going study and further improvements of the presented results can be expected.

Definition 1 (Steiner Tree Problem with Revenues, Budget and Hop
Constraints (STPRBH)). We are given an undirected graph G = (V,E) with
edge costs c : E 7→ R

+, node revenues p : V 7→ R
+ and a dedicated root node

r ∈ V , a hop limit H ∈ N
+ and a budget limit B ∈ R

+.
A feasible solution of the STPRBH is a subtree T = (VS ⊆ V,ES ⊆ E) rooted

at r, where every node in VS can be reached form the root r using at most H
edges and the total cost of the edges in ES does not exceed B, i.e.,

∑

e∈ES
ce ≤ B.

The goal is to find a feasible subtree T ∗ that maximizes the revenue defined as
∑

v∈VS
pv.

The problem has been introduced in [2] where three branch-and-cut ap-
proaches have been presented: one based on Miller-Tucker-Zemlin constraints,
one on Dantzig-Fulkerson-Johnson (also known as subtour-elimination) con-
straints, and one on hop-indexed formulation. Note that the latter formulation
is based on hop-indexed edge variables, i.e., it can be viewed as an edge-based
layered graph approach. Instances derived from sets B and C of the OR-library
[3] have also been introduced in [2]. All instances from the set B and instances
C1 to C5 have been solved to optimality with the approaches from [2]. However,
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Fig. 1: (1a) Graph of an instance of the STPRBH problem. Let p1 = 10, p2 = 0,
p3 = 4, p4 = 9, p5 = 5, the cost of the solid edges be one, and of the dashed edges
be five. (1b) The optimal solution for H = 2 and B = 3 is and has objective
value 15.

no single model works well for all instances. In [4], the same authors proposed
a greedy heuristic and a tabu search with some improvement procedures. They
also report some results for C6 to C20. According to [4], for these instances,
not even the root relaxation could be solved within a time limit of two hours
(in most of the cases). Branch-and-price approaches for the STPRBH have been
studied by Sinnl [5], and in [6] a lifted Miller-Tucker-Zemlin formulation and a
formulation based on reformulation-linearization techniques were given. These
two latter papers report on computational results on the instances from set B
and C1 to C5, but offer no consistent speed up, when compared to [4]. Recently,
a breakout local search algorithm (see [7]) and a memetic algorithm (see [8])
have been proposed. These two recent papers provide improved feasible solu-
tions for some of the unsolved instances (C6 to C20). Some new instances based
on graphs C16 to C20 are also introduced in [8].

2 Problem Formulation and Enhancements

Let GL = (VL, AL) be the layered graph associated with a rooted graph G(V,
E) and hop limit H . It can be defined as follows (see, e.g., [1]): The node set
VL = r ∪ V 1 ∪ V 2 ∪ . . . ∪ V H , where V h contains a copy vh of a node v ∈ V , iff
v can be reached by a path of exactly h edges in G. Note that the root node r
is the only node on layer zero. The arc set AL = A1 ∪ A2 ∪ . . . ∪ AH , where Ah

contains a directed copy (i, j) of an edge {i, j} ∈ E, iff i ∈ V h−1 and j ∈ V h.
Thus the layered graph has size O(H(|V | + |E|)). Figure 2 shows the layered
graph associated with our exemplary instance from Figure 1a and H = 3.

In previous approaches from literature, hop-constrained problems are formu-
lated on GL by associating variables to the arcs AL of the layered graph, e.g.,
xh
ij is one, if arc {i, j} is used on layer h. While this usually gives models with

strong LP-bounds, the size of the resulting models soon becomes prohibitive. We
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Fig. 2: Layered graph associated with the graph from (1a) and H = 3.

thus propose to project out arc variables from the layered graph and model the
hop-constraints by associating variables with the nodes VL of the layered graph.

To do so, we transform the graph G into a rooted digraph D = (V,A), where
A are the bidirected edges from E. We use the following sets of binary variables
to model our problem:

xa =

{

1 if arc a is part of the solution

0 otherwise
for a ∈ A;

yv =

{

1 if node v is part of the solution

0 otherwise
for v ∈ V ;

Variables x and y are used to model a rooted arborescence in G (similar to
the standard approaches to the prize-collecting Steiner trees). Additional node
variables yhv are introduced to model the distance of the node v from the root r,
i.e.:

yhv =

{

1 if node v is on layer h in the solution

0 otherwise
for v ∈ V, h ∈ H.

The yh-variables, together with the x-variables are used to ensure that the so-
lution satisfies the hop constraint.

Let δ−(W ) = {(i, j) ∈ A : i 6∈ W, j ∈ W} and δ+(W ) = {(i, j) ∈ A : i ∈ W,
j 6∈ W}. Let T denote the set of all terminals (i.e., depending on the problem,
nodes, which must be in any feasible solution, or nodes with positive revenue)
and let S = V \T . Using this notation, we obtain a generic model (NODEHOP)
for hop-constrained tree problems:
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(NODEHOP) x(δ−(W )) ≥ yv ∀W ⊆ V, v ∈ W ∩ T, r 6∈ W (1)

yr = 1 (2)

x(δ−(v)) = yv ∀v ∈ V (3)
∑

h∈H

yhv = yv ∀v ∈ V (4)

xrv = y1v ∀(r, v) ∈ A (5)

yh−1
v + xvw ≤ 1 + yhw ∀(v, w) ∈ A, v 6= r, 2 ≤ h ≤ H (6)

yHv + xvw ≤ 1 ∀(v, w) ∈ A, v 6= r (7)

xa ∈ {0, 1} ∀a ∈ A (8)

yv ∈ {0, 1} ∀v ∈ V (9)

yhv ∈ {0, 1} ∀v ∈ V, h ∈ H (10)

Constraints (1), (2) and (3) is the cut formulation for the (prize-collecting)
Steiner tree problem (see, e.g. [9]) and ensures that our solution is an arbores-
cence rooted at r.

The remaining set of inequalities (4)-(7) deals with the hop constraint: If
a node is part of the solution, it must lie on some layer (4) and if a node lies
on the last layer which is feasible, i.e., H , there can be no outgoing arc from
it (7). Moreover, if the arc going from the root to node v is used, node v must
lie on layer 1, this is ensured by (5). Constraints (6) make sure that if a node
v lies on layer h − 1 (2 ≤ h ≤ H) and arc (v, w) is taken in the solution, then
node w must lie on layer h+1. Note that crucial for the validity of our model is
the tree/arborescence property: since every node only has one incoming arc (see
constraints (3)), the layer of each node is uniquely defined. Thus, inequalities
(1) to (7) ensure in a generic way that the solution is an arborescence, satisfying
the hop-constraint.

2.1 Modeling the STPRBH and the HCSpT

Using the generic model NODEHOP, it is easy to obtain the following formula-
tion for the STPRBH:

(STPRBH) max
∑

v∈T

pvyv (11)

∑

a∈A

caxa ≤ B (12)

(x, y, yh) ∈ NODEHOP (13)

The objective function (11) ensures maximization of the profit, while con-
straint (12) makes sure that a solution does not exceed the given budget B.
Similarly, we can model the HCSpT as follows:
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(HCSpT) min
∑

a∈A

caxa (14)

yi = 1 ∀i ∈ V (15)

(x, y, yh) ∈ NODEHOP (16)

The objective function (14) ensures minimization of the cost, and constraints
(15) ensure that all nodes are in the solution. Clearly, by specifying constraints
(15) for a given terminal set T ⊂ V , instead of all V , the Hop Constrained
Steiner Tree Problem can also be modeled in our framework.

2.2 Improving the Model

In the following we provide some improvements of the proposed model. Some
of these improvements are only possible, when T 6= V , i.e., for Steiner Tree
problems, but not for their spanning tree counterparts.

Fixing of Variables Obviously, no node v, where (r, v) 6∈ A can lie on the first
layer, thus also all variables corresponding to such nodes can be fixed to zero.
This fixing can be enhanced with the help of a breadth-first-search (BFS) that
calculates the shortest distance (in terms of the number of edges) between the
two nodes u and v, denoted by dist(u, v). Let BFSr be the tree resulting from a
BFS starting at a root node, then dist(r, v) denotes also the layer on which node
v lies in this tree. Consequently, all variables yhv with h < dist(r, v) can clearly
be fixed to zero. For a similar approach, see also [10].
Moreover, it is easy to see that there always exists an optimal solution for
STPRBH (and other Steiner tree problems), where no Steiner node S is a leaf.
It follows that no node in S can lie on the last layer H , thus we can fix all yHv ,
v ∈ V \ T to zero.
Finally, for a node v ∈ V , let dist(v, T ) = minw∈T dist(v, w) be the distance
between v and a closest node from the terminal set T . By definition, if v ∈ S,
we must cross at least dist(v, T ) − 1 layers in order to reach a node in T from
v. It follows that all variables yhv with h > H − dist(v, T ) can be fixed to zero.
Consequently, all variables yv, with dist(r, v) + dist(v, T ) > H , can be fixed to
zero as well (resp. removed in a preprocessing step).

Valid Inequalities

Hop-Link and Hop-Link-End Inequalities First, note that in both constraints (6)
and (7), the value 1 can be lifted down to yv. The constraints still remain valid,
since any of yh−1

v , yHv and xvw set to one also implies that yv is set to one. The
obtained constraints are

yh−1
v + xvw ≤ yv + yhw, ∀(v, w) ∈ A, v 6= r, 2 ≤ h ≤ H (HLink)
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They will be called hop-link constraints, as they are linking nodes of two con-
secutive layers with an arc. Similarly, for the nodes at the last layer, we will call
the following constraints, hop-link-end constraints :

yHv + xvw ≤ yv, ∀(v, w) ∈ A, v 6= r (HLinke)

Lifted Hop-Link and Hop-Link-End Inequalities These two inequalities can fur-
ther be improved by observing that an arc (v, w) must start at some layer
k ≤ H − dist(w, T )− 1, because node w must lie in a layer ≤ H − dist(w, T ) in
an optimal solution. Let k∗ = max{h,H− dist(w, T )}. We can add

∑

k≥k∗ yki to
the left-hand-side of (HLink)

Theorem 1. Let (v, w) ∈ A, v 6= r, 2 ≤ h ≤ H and k∗ = max{h,H − dist(w,
T )}. Then the lifted hop-link inequality

yh−1
v +

H
∑

k=k∗

ykv + xvw ≤ yv + yhw (l-HLink)

is valid for NODEHOP.

Proof. If all ykv , k ≥ k∗ are zero, the inequality reduces to (HLink). Thus, suppose
some ykv is one. Due to the fixing of variables ykw to zero (for k ≥ H−dist(w, T ))
and inequalities (HLink), (HLinke), it follows that xvw = 0, when some ykv is
one. Since the sum starts at max{h,H − dist(w, T )}, every yhv only appears at
most once on the left-hand-side and due to equalities (4), the left-hand-side in
this case is one and the right-hand-side is at least one. ⊓⊔

We distinguish the following two cases:

– w ∈ S: Notice that for h ≥ H − dist(w, T ) this inequality boils down into:

H
∑

k=h−1

ykv + xvw ≤ yv, ∀(v, w) ∈ A, v 6= r,H − dist(w, T ) ≤ h ≤ H,w ∈ S

(17)
since yhw is fixed to zero. One easily observes than all inequalities of type (17)
for h > H − dist(w, T ) are dominated by the single inequality of the same
type for h = H − dist(w, T ). This also holds for (HLinke), which is actu-
ally (17) for h = H .

– w ∈ T : Similarly, for w ∈ T , inequality (l-HLink) becomes:

yh−1
v + yHv + xvw ≤ yv + yhw, ∀(v, w) ∈ A, v 6= r, 2 ≤ h ≤ H,w ∈ T (18)

Observe that (18) is just the inequality (HLink) lifted from the left-hand-side
by yHv .
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Generalized Hop-Link and Hop-Link-End Inequalities Using constraint (4) cor-
responding to node v, inequality (HLink) for an arc (v, w), v 6= r and a given
layer h : 2 ≤ h ≤ H can be rewritten as

xvw ≤
∑

k∈H1,k 6=(h−1)

ykv + yhw (19)

where H1 := {1, . . . , H}. It has the intuitive meaning that if arc (v, w) is in the
solution, it either ends at layer h (and thus has started at layer h − 1), or it
must have started at some other layer than h − 1. Consider now another layer
l 6= h: Inequality (19) is valid, because when arc (v, w) ends at layer l, it must
have started at layer l − 1 and there is yl−1

v on the right-hand-side of (19).
To motivate the generalization of these inequalities, observe that when the

arc (v, w) ends at some layer 6= l, h, the variable yl−1
v must be zero in a valid

solution. Moreover, when arc (v, w) ends at layer l, the variable ylw must be
one in any feasible solution. Thus it follows that yl−1

v can be replaced by ylw in
constraint (19) and the constraint remains valid. Generalizing this idea further,
we observe that for each layer h ≥ 2, in the summation on the right-hand-side,
we must either include yh−1

v or yhw. This brings us to the following family of
inequalities:

Theorem 2. Let H2 = {2, . . . , H} and P be the family of functions P = 2H2 ,
and (v, w) ∈ A, v 6= r. Then the generalized hop-link inequality

xvw ≤
∑

h∈H2

(

phy
h−1
v + (1 − ph)y

h
w

)

(g-HLink)

is valid for NODEHOP.

Proof. Clearly, when node w lies on layer 1 it must be connected to the root
node and xvw must be zero. Thus suppose there exists a feasible solution, where
node w lies on some layer k : 2 ≤ k ≤ H , xvw is one, i.e., the arc (v, w) is used
and the right-hand-side of (g-HLink) is zero. Since node w lies on layer k and
the arc (v, w) is used, it follows that node v must lie on layer k− 1. This implies
that both yk−1

v and ykw are one. Due to the definition of the function p, pk = 1
or pk = 0 and consequently, we have either yk−1

v or ykw on the right-hand-side
and thus the right-hand-side is one, which is a contradiction to the assumption
that the inequality is violated. ⊓⊔

For each arc (v, w) ∈ A, constraints (g-HLink) can easily be separated in
O(H) time: Given a fractional solution (x̃, ỹ, ỹh), for each layer h ≥ 2, we con-
sider the sum

∑

h∈H2
min{ỹh−1

v , ỹhw}. If the obtained sum is smaller than x̃vw , a
violated constraint is detected.

Let us now consider the special mapping p ∈ P , such that ph =

{

1 if h is even

0 otherwise
.

Then, (g-HLink) becomes:

xvw ≤

{

∑

h∈H2,h odd

(

yhv + yhw
)

+ y1v − yHv , H odd
∑

h∈H2,h odd

(

yhv + yhw
)

+ y1v, otherwise
(20)
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Observe that we need the case distinction due to the range in the summation,
in case that H is odd, we have yHv in the sum, which is not implied by inequali-
ties (g-HLink) and we thus subtract it again in the end. For ease of notation, we
assume that H is odd in the following, the case with H being even works analo-
gously. By summing-up inequalities (20) associated to arcs (v, w) and (w, v), we
end up with

xvw + xwv ≤
∑

h∈H2,h odd

2
(

yhv + yhw
)

+ y1v + y1w − yHv − yHw (21)

After rewriting the right-hand-side as
∑H−1

h=2,h odd 2
(

yhv +yhw
)

+y1v+y1w+yHv +yHw ,
we can down-lift the coefficient 2 on the right-hand-side to 1 (since xvw +xwv ≤
1). Thus, the validity of the new derived inequalities presented in the following
theorem follows immediately.

Theorem 3. Let (v, w) ∈ A, v 6= r. Then the odd two-arc hop-link inequality

xvw + xwv ≤
∑

h∈H1,hodd

(

yhv + yhw
)

(o2AHLink)

is valid for NODEHOP.

Starting now with the mapping p ∈ P , such that ph =

{

0 if h is even

1 otherwise
and

using similar arguments, we end up with the following family of valid inequalities.

Theorem 4. Let (v, w) ∈ A, v 6= r. Then the even two-arc hop-link inequality

xvw + xwv ≤
∑

h∈H2,heven

(

yhv + yhw
)

(e2AHLink)

is valid for NODEHOP.

Cut Inequalities on the Layered Graph If a node w lays on a layer h, there
obviously must be at least one node v 6= w at layer h − 1 in the solution. This
leads to the following family of node-hop-index inequalities:

∑

(v,w)∈A

yh−1
v ≥ yhw (22)

Such inequalities (expressed in terms of arc-variables on the layered graph)
are commonly used in the hop-indexed models for hop-constrained problems
(see, e.g. [11]). They represent a compact way of ensuring a connectivity of a
solution. However, these hop-indexed compact models are known to suffer from
weak lower bounds. In state-of-the-art approaches, connectivity constraints are
therefore modeled using cut-set inequalities on layered graphs (see, e.g. [1,10]).
In a similar fashion, we are currently working on a generalization of cut-set
inequalities on the layered graph using yh and x variables only.
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Hereby, we illustrate a subfamily of desired cut-set inequalities that is used
in our current computations. Observe first that if the input graph is complete,
node-hop-index inequalities will be in general very weak, since the left-hand-
side contains all nodes on layer (h − 1) in this case. Clearly, also the following
inequality holds for any h and node w 6= r, since it is a weaker version of
inequalities (1) for W = {v}:

∑

(v,w)∈A

xvw ≥ yhw (23)

Observe that in both (22) and (23), the right-hand-side is the same, and we
sum over all arcs on the left-hand-side. Hence, we can derive a more general
family of inequalities, which contains both (22) and (23) as a special case.

Theorem 5. Let R be the family of functions R = 2A and r ∈ R, w ∈ V and
2 ≤ h ≤ H. Then the node-arc-cut-inequalities

∑

(v,w)∈A

(

rvwxvw + (1− rvw)y
h−1
v

)

≥ yhw (NACut)

are valid for NODEHOP.

Proof. Suppose there exists a feasible solution, where yhw is one, i.e., node w lies
on layer h, and the left-hand-side is zero. However, since the node lies on layer h,
there must be an incoming arc (v, w) from some node v lying on layer h−1, thus
both yh−1

v and (v, w) must be one. One of these variables is on the left-hand-side
of constraint (NACut), and thus the left-hand-side is one, which concludes the
proof. ⊓⊔

Constraints (NACut) can be separated in polynomial time as follows: Given
a fractional solution (x̃, ỹ, ỹh) and a node w and layer h, consider all nodes
v, such that (v, w) ∈ A, and calculate the sum

∑

v:(v,w)∈Amin{x̃vw, ỹ
h−1
v }. If

the resulting sum is smaller than the LP-value of yhw, a violated inequality is
obtained.

3 Computational Results

We have implemented branch-and-cut algorithms for the STPRBH and the HC-
SpT based on our model. The computational results are obtained using a single
core of an Intel E5-2670v2 with 2.5GHz and 64GB RAM and CPLEX 12.6 as
ILP-solver. The following general purpose cuts of CPLEX have been set to one
(moderate generation of cuts): fractional, zero-half, cover, all the other cuts
are left at the default parameter.

Our initial model for both the STPRBH and the HCSpT consists of (2),
(3), (4),(5), (l-HLink) for h = k∗ − 1, i.e., the lifted version of (HLinke) and
(e2AHLink). Moreover, inequalities
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xij + xji ≤ yi, i, j ∈ V,

which are (1) for |W | = 2 are added. Inequalities (1), as well as inequalities
(l-HLink) and (NACut) are separated “on the fly”. Constraints (1) are separated
using a max-flow separation, when the LP-solution is fractional (see, e.g., [9],
[12] for details), and with a breadth-first search, when the LP-solution is integer.
Constraints (l-HLink) are of polynomial size and are separated by enumeration
and (NACut) are separated as described above. Depending on the problem,
additional constraints have been used, these constraints are mentioned in the
respective sections for the STPRBH and the HCSpT. The above model is called
IMPROVED. In the following, we also report results for a basic model, where the
valid inequalities (e2AHLink) and (NACut) are not used, this model is denoted
by BASIC.

Our algorithm also contains a primal heuristic which is called after each
LP at the root node and at the end of each node in the branch-and-bound tree.
Moreover, for the STPRBH, we explicitly turned on the CPLEX heuristics, while
for HCSpT, we left it at the default setting, since this has proven advantageous
in our initial testruns.

3.1 STPRBH

The initial model additionally contains inequality (12) and the flow-balance in-
equalities

x(δ−(v)) ≤ x(δ+(v)), ∀v ∈ S

which are known to strengthen the LP-values of Steiner tree problems, see [9],[12].
We are currently working on a version of these inequalities which incorporates
yh variables, similar to inequalities (NACut).

The branching priorities are set as following: Each variable yv is assigned
priority pv + 1 +H , each variable yhv gets priority H − h and arc variables are
assigned priority zero. This setting is chosen, since we conjecture that the most
important decision in the STPRBH is to decide, which nodes, especially nodes
with positive revenue, are in the solution. Moreover, if a node v lies on a layer
near the root node, it will greater influence the structure of the solution, than v
lying on a layer near H .

Primal Heuristic Our primal heuristic is a modification of the improved ver-
sion Prim-I [13] of the well-known Prim-based Steiner tree heuristic [14]. The
heuristic works similar to Prim’s minimum spanning tree algorithm [15], which
starts with some node (the root node r, in our case) and then greedily grows the
solution tree Sol by adding the node v 6∈ Sol, with minimum connection cost
to Sol, i.e., the minimum cost edge e = argmin{ce=vs : (v, s) : v ∈ V \ Sol,
s ∈ Sol}, until all nodes are added. In the Steiner tree case, the solution Sol
is grown by greedily adding terminal nodes t 6∈ Sol, with minimum connection
cost, the connection cost is now not the cost of a single edge, but the cost from
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Sol to the terminal. When adding the chosen terminal to Sol, all the nodes
on the paths are also added to Sol. We modified the algorithm Prim-I for the
STPRBH, by taking the hop-limit and the budget-limit into account. This can
be easily achieved, since Prim-I works similar to Dijsktra’s shortest path algo-
rithm: Whenever an arc is going to be considered as part of a shortest path
to a terminal, we check, if the hop-constrained is still fulfilled after adding the
arc (note that for this check, the value H − dist(v, T ) can be used, instead of
the hop-limit), if not, we ignore the connection offered by the arc. The budget-
constraint is checked, whenever a terminal is added, if it would be violated, we
stop the algorithm. When using this algorithm as primal heuristic, we set the
arc weights to c̄a = ca(1− x̃a), where x̃a is the current LP-value of variable xa.
We have also experimented to take the information offered by ỹhv into account
for the arc weights, but in general this produced worse results. The algorithm is
also used as starting heuristic, in this case, the original arc weights ca are used.

Instances We tested our algorithm on the instances provided on the DIMACS-
homepage. These instances have been proposed by [2] and [8]. Both are based
on the graphs from the sets B and C of the Steiner tree problem (STP) graphs
of OR-lib [3]. The transformation into STPRBH-instances is done as follows:

– terminal nodes from the STP are used as profitable nodes by associating a
random profit to it

– the budget B is determined as
∑

e∈E ce/b, where b is a given divisor

– a hop-limit H is given

Using this transformation, the following set of instances have been created
in [2] and [8] (see Table 1).

Table 1: Instances from the DIMACS-homepage (information taken from the file
by Zhang-Hua Fu and Jin-Kao Hao). Instances of the upper group have been
proposed by [2], the remaining ones by [8].

graphs p b H number of inst.

B1-B18 [1-100] 5, 20 3, 6, 9, 12 144
C01-C05 [1,10], [1,100] 10, 30 5, 15, 25 60
C06-C10 [1,10], [1,100] 20, 50 5, 15, 25 60
C10-C15 [1,10], [1,100] 10, 100 5, 15, 25 60
C15-C20 [1,10], [1,100] 100, 200 5, 15, 25 60

C16 [1,10], [1,100] 10000 5, 15, 25 6
C17 [1,10], [1,100] 5000 5, 15, 25 6
C18-C20 [1,10], [1,100] 1000 5, 15, 25 18
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Results We have set a time limit of 1 000 seconds for our testruns. All in-
stances of set B can be solved in a few seconds with our algorithm using both
IMPROVED or BASIC, so we do not show the results here. Detailed results
for the C instances can be found in the Appendix: Table 2 provides the results
for the new instances C from [8], whereas Tables 3 – 6 give the results for the
instances C from [2]. Each table reports the obtained solution value (sol. val),
which is shown in bold, if we have been able to prove optimality. The obtained
upper bound (UB) is also given, note that the instances are all integral, thus
we used UB − sol. val < 1 as stopping criterion. In addition, the gap after the
timelimit is given [Gap%], as well as the root gap [RGap%]. This gaps are given
with respect to the best found solution value. If we have UB − sol. val < 1, opt
is written instead. Note that this does not mean that optimality is proven in the
root node, since the optimal solution may have not been found yet. On the other
hand, CPLEX in some cases is able to use problem specific information to prove
optimality even if the root gap is greater than one. The time (t[s]) needed to
prove optimality is also reported. If we were not able to prove optimality within
our time limit of 1 000 seconds, the corresponding entry in the table is “-”. The
entry tbest[s] contains the time when the best solution has been found and nodes
gives the number of nodes in the branch-and-cut tree.

Concerning the set of instances from [2], before our study, only 312 out of 384
instances of this set have been solved to optimality (instances based on B and
C1–C5 were solved to optimality by branch-and-cut algorithms from [2], and for
the remaining 108 instances, heuristics from [7],[8] found solutions with objective
value similar to the sum of all revenues). Using our new approach IMPROVED,
we have singinificantly improved these results: We proved the optimality for 378
instances, and for the remaining 6 instances of this set, we additionally improve
the best known solutions.

For the new instances from [8], 25 out of 30 were solved to optimality using
IMPROVED. None of them has been solved to optimality before.

Using the setting BASIC, 368 and 22 instances from [2] and [8], respectively,
are solved within the timelimit, thus the valid inequalities used in IMPROVED
clearly have a positive effect on the algorithmic performance. Taking a closer
look at the results, we observe that for more than 75% of the instances of set C,
the approach IMPROVED proves optimality already in the root node. Further-
more, for more than 85% of the instances of set C, optimality is proven within
50 seconds runtime.

3.2 HCSpT

The initial model additionally contains equalities (15), i.e., the constraint that
all nodes must be in the solution, and inequalities (o2AHLink). The branching
priorities are set in a similar way as for the STPRBH, naturally we do not give
priorities to yv, since these variables are all fixed to one. We applied the following
preprocessing from [1]: If cvw ≥ crw, then there exists an optimal solution not
using the arc (v, w) and thus such an arc can be removed.
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Primal Heuristic We use a modified version of Prim’s minimum spanning
tree algorithm, where we only add an arc if doing so does not violate the hop-
constraint. Given an LP-solution (x̃, ỹ, ỹh), we set the arc weights to c̄a = ca(1−
x̃a) for x̃a > 0 and to c̄a = M (with M = 10000 in our computations) otherwise.
Similar to the STPRBH the heuristic is also used as starting heuristic, and the
original weights are taken in this case. Again, trying to incorporate ỹh into the
arc costs did not lead to promising results in our initial tests.

Instances We tested our algorithm on the instances used in [1]. The instances
consist of complete graphs of 20-160 nodes (in steps of 20) plus one fixed root
node. Depending on the cost structure, the instances are classified into three
sets, TC, TE and TR. The first two sets have Euclidean costs, in the set TC
the root is located in the center, and in TE it is located in a corner. In set TR,
the edge costs are randomly generated and the largest graph has 60 nodes. The
used hoplimit is H = 3, 4, 5.

Results For the runs on the instances from [1] reported in this article, a time-
limit of 2000 seconds was used. Tables 7 – 9 give the results for TC, TE and
TR respectively. We report the same values in each column as for the STPRBH,
except that UB is replaced by the best obtained lower bound (since HCSpT is a
minimization problem). Moreover, we also provide the optimal solutions as re-
ported in [1]. The gaps in the table are calculated with respect to these optimal
values.

Our algorithm solves all instances from the set TR to optimality, moreover,
it also manages to solve the smaller instances from TC and TE to optimality.
For the larger instances, the gaps obtained after 2 000 seconds are up to 25%,
however, some of these larger instances are also hard for [1], with e.g., TC−160,
H = 5 taking over 10 000 seconds and TE − 160, H = 5 taking over 50 000
seconds for proving optimality. Moreover, we are not using the full potential of
our model, since we have not developed the general node-arc cuts on the layered
graph yet.

4 Conclusion

The power of layered graphs has been recently demonstrated for many problems,
including hop- and diameter-constrained spanning trees [1], hop-constrained con-
nected facility location [10], or to problems that involve more general hop- or
diameter- constraints (see, e.g., [16], [17]).

In this paper, we proposed a new extended formulation based on a layered
graph for hop- and diameter- constrained spanning/Steiner tree problems. In
contrast to previous approaches from literature, which use variables associated
with arcs of the layered graph, our new model projects out these arc variables and
relies only on node variables in the layered graph. Thus, models with significantly
less variables can be derived, and it remains our next goal to study the benefits
of this new approach for other standard problems from the literature.
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Our main computational study has been conducted on the STPRBH, for
which we have been able to significantly improve results from the available liter-
ature: we prove the optimality for all except eleven out of 414 instances from two
different data sets. For the eleven unsolved cases, we provide new best known
solutions. In addition, for the HCSpT, we compare our new modeling approach
with the state-of-the-art branch-and-cut from [1]. The results indicate that the
LP-bounds of our new model still can be improved. The subject of our future
study is the investigation of a family of more general cut-set inequalities on the
layered graph, with the available (reduced) set of binary variables.
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Appendix 1: Detailed Results for STPRBH

Table 2: Results for the instances from the DIMACS challenge: Instances based
on graphs C16− C20 from [8], setting: IMPROVED

inst budget hop sol. val UB Gap [%] RGap [%] t [s] tbest [s] nodes

C16-10 10000 5 19 19.00 opt 42.11 3.94 3.93 0
C16-10 10000 15 19 19.00 opt opt 7.76 7.74 0
C16-10 10000 25 19 19.00 opt 42.11 5.54 5.52 0
C16-100 10000 5 203 203.00 opt 34.98 3.96 3.95 0
C16-100 10000 15 203 203.00 opt 34.98 5.57 5.55 0
C16-100 10000 25 203 203.00 opt 34.98 5.53 5.51 0
C17-10 5000 5 47 47.00 opt 6.38 9.72 0.30 4
C17-10 5000 15 50 50.00 opt 0.61 14.86 12.17 0
C17-10 5000 25 50 50.00 opt opt 22.59 17.74 0
C17-100 5000 5 481 481.00 opt 4.26 35.13 0.31 4
C17-100 5000 15 513 513.00 opt 0.52 15.38 11.37 0
C17-100 5000 25 513 513.00 opt opt 42.54 7.81 0
C18-10 1000 5 318 322.06 1.28 1.36 - 50.87 48
C18-10 1000 15 341 341.00 opt 0.29 78.32 56.90 21
C18-10 1000 25 341 341.00 opt 0.46 225.64 171.50 31
C18-100 1000 5 3320 3357.87 1.14 1.34 - 229.13 28
C18-100 1000 15 3552 3552.00 opt 0.44 519.4 122.62 96
C18-100 1000 25 3557 3557.00 opt 0.25 262.35 76.24 23
C19-10 1000 5 404 404.00 opt opt 62.66 58.78 0
C19-10 1000 15 428 428.00 opt opt 17.2 16.13 0
C19-10 1000 25 428 428.00 opt opt 26.59 16.58 0
C19-100 1000 5 4179 4179.00 opt 0.28 194.16 110.98 62
C19-100 1000 15 4435 4435.00 opt 0.05 38.75 23.03 3
C19-100 1000 25 4435 4435.00 opt 0.07 98.19 82.45 7
C20-10 1000 5 460 460.00 opt 0.63 915.89 85.17 196
C20-10 1000 15 504 505.77 0.35 0.4 - 678.96 160
C20-10 1000 25 506 506.00 opt opt 62.95 54.42 0
C20-100 1000 5 4768 4804.08 0.76 0.83 - 186.12 54
C20-100 1000 15 5222 5255.46 0.64 0.66 - 749.28 103
C20-100 1000 25 5256 5256.00 opt 0.01 108.25 106.06 1
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Table 3: Results for the instances from the DIMACS challenge: Instances based
on graphs C01− C05 from [2], setting: IMROVED
inst budget hop sol. val UB Gap [%] RGap [%] t [s] tbest [s] nodes

C01-10 10 5 8 8.00 opt opt 0.02 0.02 0
C01-10 30 5 8 8.00 opt opt 0.02 0.02 0
C01-10 10 15 27 27.00 opt opt 0.09 0.03 0
C01-10 30 15 27 27.00 opt opt 0.09 0.03 0
C01-10 10 25 27 27.00 opt opt 0.21 0.04 0
C01-10 30 25 27 27.00 opt opt 0.22 0.04 0
C01-100 10 5 71 71.00 opt opt 0.02 0.02 0
C01-100 30 5 71 71.00 opt opt 0.02 0.02 0
C01-100 10 15 274 274.00 opt opt 0.1 0.03 0
C01-100 30 15 274 274.00 opt opt 0.09 0.03 0
C01-100 10 25 274 274.00 opt opt 0.21 0.04 0
C01-100 30 25 274 274.00 opt opt 0.22 0.04 0
C03-10 10 5 151 151.00 opt opt 0.03 0.02 0
C03-10 30 5 95 95.00 opt 1.04 0.05 0.03 0
C03-10 10 15 289 289.00 opt 0.3 4.55 4.54 24
C03-10 30 15 129 129.00 opt opt 1.89 1.24 0
C03-10 10 25 289 289.00 opt 0.36 4.67 1.18 1
C03-10 30 25 129 129.00 opt opt 5.46 5.45 0
C03-100 10 5 1519 1519.00 opt opt 0.03 0.02 0
C03-100 30 5 968 968.00 opt 0.69 0.13 0.06 4
C03-100 10 15 2971 2971.00 opt 0.55 18.29 6.16 109
C03-100 30 15 1343 1343.00 opt 0.3 1.31 0.03 0
C03-100 10 25 2979 2979.00 opt 0.42 26.87 5.01 115
C03-100 30 25 1343 1343.00 opt 0.3 4.07 0.05 0
C04-10 10 5 115 115.00 opt opt 0.03 0.02 0
C04-10 30 5 84 84.00 opt 4.24 0.03 0.02 0
C04-10 10 15 336 336.00 opt 1.51 157.63 6.22 522
C04-10 30 15 134 134.00 opt 1.4 4.73 4.52 0
C04-10 10 25 341 341.00 opt 0.02 3.91 2.56 0
C04-10 30 25 136 136.00 opt 0.78 3.3 1.97 0
C04-100 10 5 1148 1148.00 opt opt 0.03 0.02 0
C04-100 30 5 854 854.00 opt opt 0.03 0.02 0
C04-100 10 15 3458 3458.00 opt 1.31 392.39 18.39 941
C04-100 30 15 1380 1380.00 opt 1.48 6.8 4.21 32
C04-100 10 25 3504 3504.00 opt opt 10 0.66 0
C04-100 30 25 1396 1396.00 opt 0.34 8.75 2.68 4
C05-10 10 5 258 258.00 opt opt 0.05 0.03 0
C05-10 30 5 154 154.00 opt opt 0.05 0.03 0
C05-10 10 15 494 494.00 opt 0.61 22.24 21.33 49
C05-10 30 15 182 182.00 opt 1.4 6.77 6.75 19
C05-10 10 25 495 495.00 opt 0.34 31.68 17.95 52
C05-10 30 25 183 183.00 opt 0.64 6.19 2.70 0
C05-100 10 5 2600 2600.00 opt opt 0.04 0.02 0
C05-100 30 5 1584 1584.00 opt opt 0.04 0.02 0
C05-100 10 15 5032 5032.00 opt 0.25 77.5 16.47 386
C05-100 30 15 1857 1857.00 opt 1.02 5.9 3.29 27
C05-100 10 25 5044 5044.00 opt 0.19 132.36 39.65 283
C05-100 30 25 1860 1860.00 opt 0.81 87.09 8.94 302
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Table 4: Results for the instances from the DIMACS challenge: Instances based
on graphs C06− C10 from [2], setting: IMPROVED

inst budget hop sol. val UB Gap [%] RGap [%] t [s] tbest [s] nodes

C06-10 20 5 27 27.00 opt opt 0.03 0.02 0
C06-10 50 5 27 27.00 opt opt 0.04 0.03 0
C06-10 20 15 27 27.00 opt opt 0.2 0.04 0
C06-10 50 15 27 27.00 opt opt 0.22 0.05 0
C06-10 20 25 27 27.00 opt opt 0.46 0.07 0
C06-10 50 25 27 27.00 opt opt 0.45 0.06 0
C06-100 20 5 274 274.00 opt opt 0.03 0.02 0
C06-100 50 5 274 274.00 opt opt 0.03 0.02 0
C06-100 20 15 274 274.00 opt opt 0.22 0.05 0
C06-100 50 15 274 274.00 opt opt 0.23 0.06 0
C06-100 20 25 274 274.00 opt opt 0.46 0.06 0
C06-100 50 25 274 274.00 opt opt 0.44 0.06 0
C07-10 20 5 49 49.00 opt opt 0.04 0.02 0
C07-10 50 5 49 49.00 opt opt 0.04 0.02 0
C07-10 20 15 59 59.00 opt opt 0.22 0.05 0
C07-10 50 15 59 59.00 opt opt 0.21 0.04 0
C07-10 20 25 59 59.00 opt opt 0.46 0.06 0
C07-10 50 25 59 59.00 opt opt 0.46 0.06 0
C07-100 20 5 503 503.00 opt opt 0.03 0.02 0
C07-100 50 5 503 503.00 opt opt 0.03 0.02 0
C07-100 20 15 604 604.00 opt opt 0.23 0.05 0
C07-100 50 15 604 604.00 opt opt 0.22 0.05 0
C07-100 20 25 604 604.00 opt opt 0.44 0.06 0
C07-100 50 25 604 604.00 opt opt 0.47 0.06 0
C08-10 20 5 230 230.00 opt 0.22 0.08 0.06 0
C08-10 50 5 116 116.00 opt 0.98 0.13 0.07 0
C08-10 20 15 331 331.00 opt 0.38 55.19 54.23 55
C08-10 50 15 171 171.00 opt 1 13.27 12.59 27
C08-10 20 25 332 332.00 opt 0.08 4.68 4.04 0
C08-10 50 25 172 172.00 opt 0.42 6.17 5.46 0
C08-100 20 5 2380 2380.00 opt opt 0.07 0.04 0
C08-100 50 5 1216 1216.00 opt 0.96 0.21 0.07 17
C08-100 20 15 3431 3452.06 0.61 0.77 - 41.01 209
C08-100 50 15 1776 1776.00 opt 1.23 23.82 12.50 62
C08-100 20 25 3455 3455.00 opt 0.07 27.49 24.09 14
C08-100 50 25 1792 1792.00 opt 0.34 19.23 14.57 11
C09-10 20 5 304 304.00 opt 0.24 0.9 0.63 0
C09-10 50 5 149 149.00 opt 0.82 0.73 0.20 12
C09-10 20 15 381 384.93 1.03 1.05 - 87.23 151
C09-10 50 15 185 185.00 opt 0.92 32.58 19.37 44
C09-10 20 25 385 385.00 opt opt 28.15 28.14 6
C09-10 50 25 187 187.00 opt 0.44 8.11 4.66 0
C09-100 20 5 3133 3133.00 opt 0.1 0.81 0.34 7
C09-100 50 5 1563 1563.00 opt 0.26 0.5 0.22 0
C09-100 20 15 3945 3964.69 0.5 0.76 - 30.84 338
C09-100 50 15 1906 1906.00 opt 1.56 425.42 18.05 616
C09-100 20 25 3974 3974.00 opt 0.06 7.54 6.07 0
C09-100 50 25 1933 1933.00 opt 0.15 21.3 4.49 6
C10-10 20 5 391 391.00 opt opt 0.28 0.22 0
C10-10 50 5 185 185.00 opt 1.22 0.25 0.15 0
C10-10 20 15 565 580.58 2.76 2.95 - 131.22 97
C10-10 50 15 257 257.00 opt 0.39 6.95 1.29 10
C10-10 20 25 580 580.00 opt 0.29 345.85 343.30 70
C10-10 50 25 258 258.00 opt 0.29 8.57 7.12 0
C10-100 20 5 4096 4096.00 opt opt 0.17 0.09 0
C10-100 50 5 1940 1940.00 opt 0.13 0.75 0.15 5
C10-100 20 15 5849 5990.03 2.41 2.47 - 236.78 108
C10-100 50 15 2657 2657.00 opt 0.52 20.68 2.96 18
C10-100 20 25 5972 5991.00 0.32 0.34 - 737.49 152
C10-100 50 25 2683 2683.00 opt 0.1 6.83 5.40 019



Table 5: Results for the instances from the DIMACS challenge: Instances based
on graphs C11− C15 from [2], setting: IMPROVED

inst budget hop sol. val UB Gap [%] RGap [%] t [s] tbest [s] nodes

C11-10 20 5 27 27.00 opt opt 0.13 0.06 0
C11-10 100 5 27 27.00 opt opt 0.13 0.06 0
C11-10 20 15 27 27.00 opt opt 0.42 0.08 0
C11-10 100 15 27 27.00 opt opt 0.44 0.09 0
C11-10 20 25 27 27.00 opt opt 0.84 0.10 0
C11-10 100 25 27 27.00 opt opt 0.78 0.11 0
C11-100 20 5 274 274.00 opt opt 0.13 0.06 0
C11-100 100 5 274 274.00 opt opt 0.13 0.06 0
C11-100 20 15 274 274.00 opt opt 0.43 0.09 0
C11-100 100 15 274 274.00 opt opt 0.44 0.09 0
C11-100 20 25 274 274.00 opt opt 0.85 0.12 0
C11-100 100 25 274 274.00 opt opt 0.79 0.12 0
C12-10 20 5 59 59.00 opt opt 0.16 0.06 0
C12-10 100 5 59 59.00 opt opt 0.17 0.06 0
C12-10 20 15 59 59.00 opt opt 0.44 0.08 0
C12-10 100 15 59 59.00 opt opt 0.42 0.08 0
C12-10 20 25 59 59.00 opt opt 0.82 0.11 0
C12-10 100 25 59 59.00 opt opt 0.83 0.11 0
C12-100 20 5 604 604.00 opt opt 0.16 0.06 0
C12-100 100 5 604 604.00 opt opt 0.16 0.06 0
C12-100 20 15 604 604.00 opt opt 0.45 0.09 0
C12-100 100 15 604 604.00 opt opt 0.42 0.08 0
C12-100 20 25 604 604.00 opt opt 0.8 0.11 0
C12-100 100 25 604 604.00 opt opt 0.83 0.11 0
C13-10 20 5 439 439.00 opt opt 0.23 0.07 0
C13-10 100 5 257 257.00 opt 0.23 3.42 3.21 0
C13-10 20 15 439 439.00 opt opt 0.49 0.09 0
C13-10 100 15 319 319.00 opt 0.27 20.99 19.00 1
C13-10 20 25 439 439.00 opt opt 0.9 0.12 0
C13-10 100 25 319 319.00 opt 0.4 23.25 10.07 0
C13-100 20 5 4463 4463.00 opt opt 0.22 0.06 0
C13-100 100 5 2653 2653.00 opt 0.11 8.07 4.91 0
C13-100 20 15 4463 4463.00 opt opt 0.47 0.09 0
C13-100 100 15 3312 3312.00 opt 0.14 31.11 9.62 10
C13-100 20 25 4463 4463.00 opt opt 0.88 0.12 0
C13-100 100 25 3317 3317.00 opt 0.09 24.73 24.71 0
C14-10 20 5 648 648.00 opt opt 0.8 0.79 0
C14-10 100 5 373 373.00 opt 0.11 7.55 2.08 0
C14-10 20 15 648 648.00 opt opt 0.52 0.09 0
C14-10 100 15 404 404.00 opt opt 8.57 7.18 0
C14-10 20 25 648 648.00 opt opt 0.95 0.12 0
C14-10 100 25 404 404.00 opt opt 5.51 4.54 0
C14-100 20 5 6566 6566.00 opt opt 0.83 0.82 0
C14-100 100 5 3887 3887.00 opt 0.01 7.17 5.21 0
C14-100 20 15 6566 6566.00 opt opt 0.51 0.09 0
C14-100 100 15 4205 4205.00 opt opt 3.53 1.75 0
C14-100 20 25 6566 6566.00 opt opt 0.98 0.13 0
C14-100 100 25 4205 4205.00 opt opt 7.22 7.20 0
C15-10 20 5 1248 1248.00 opt opt 36.06 30.52 7
C15-10 100 5 480 480.00 opt 0.15 3.6 3.13 0
C15-10 20 15 1248 1248.00 opt opt 0.54 0.10 0
C15-10 100 15 568 568.00 opt 0.29 74.14 70.20 61
C15-10 20 25 1248 1248.00 opt opt 1.03 0.13 0
C15-10 100 25 569 569.00 opt 0.18 22.79 5.73 0
C15-100 20 5 12533 12533.00 opt opt 48.41 40.43 6
C15-100 100 5 5000 5000.00 opt opt 2.84 1.74 0
C15-100 20 15 12533 12533.00 opt opt 0.57 0.11 0
C15-100 100 15 5889 5889.00 opt 0.32 421.84 161.32 434
C15-100 20 25 12533 12533.00 opt opt 0.99 0.13 0
C15-100 100 25 5905 5905.00 opt opt 23.52 22.49 020



Table 6: Results for the instances from the DIMACS challenge: Instances based
on graphs C16− C20 from [2], setting: IMPROVED

inst budget hop sol. val UB Gap [%] RGap [%] t [s] tbest [s] nodes

C16-10 100 5 27 27.00 opt opt 1 0.30 0
C16-10 200 5 27 27.00 opt opt 0.98 0.28 0
C16-10 100 15 27 27.00 opt opt 1.91 0.33 0
C16-10 200 15 27 27.00 opt opt 1.85 0.33 0
C16-10 100 25 27 27.00 opt opt 3.05 0.40 0
C16-10 200 25 27 27.00 opt opt 3.04 0.41 0
C16-100 100 5 274 274.00 opt opt 0.95 0.28 0
C16-100 200 5 274 274.00 opt opt 0.96 0.27 0
C16-100 100 15 274 274.00 opt opt 1.87 0.33 0
C16-100 200 15 274 274.00 opt opt 1.94 0.36 0
C16-100 100 25 274 274.00 opt opt 2.8 0.39 0
C16-100 200 25 274 274.00 opt opt 2.82 0.37 0
C17-10 100 5 59 59.00 opt opt 0.95 0.26 0
C17-10 200 5 59 59.00 opt opt 0.99 0.29 0
C17-10 100 15 59 59.00 opt opt 1.93 0.34 0
C17-10 200 15 59 59.00 opt opt 1.95 0.34 0
C17-10 100 25 59 59.00 opt opt 2.99 0.41 0
C17-10 200 25 59 59.00 opt opt 2.92 0.41 0
C17-100 100 5 604 604.00 opt opt 1.02 0.29 0
C17-100 200 5 604 604.00 opt opt 1.08 0.31 0
C17-100 100 15 604 604.00 opt opt 1.93 0.35 0
C17-100 200 15 604 604.00 opt opt 1.94 0.34 0
C17-100 100 25 604 604.00 opt opt 2.79 0.38 0
C17-100 200 25 604 604.00 opt opt 2.95 0.40 0
C18-10 100 5 439 439.00 opt opt 1.09 0.29 0
C18-10 200 5 439 439.00 opt opt 1.18 0.31 0
C18-10 100 15 439 439.00 opt opt 2.07 0.35 0
C18-10 200 15 439 439.00 opt opt 2.08 0.35 0
C18-10 100 25 439 439.00 opt opt 3.09 0.42 0
C18-10 200 25 439 439.00 opt opt 3.25 0.42 0
C18-100 100 5 4463 4463.00 opt opt 1.17 0.30 0
C18-100 200 5 4463 4463.00 opt opt 1.17 0.31 0
C18-100 100 15 4463 4463.00 opt opt 2 0.33 0
C18-100 200 15 4463 4463.00 opt opt 2.03 0.34 0
C18-100 100 25 4463 4463.00 opt opt 3.22 0.44 0
C18-100 200 25 4463 4463.00 opt opt 3.38 0.47 0
C19-10 100 5 648 648.00 opt opt 1.22 0.32 0
C19-10 200 5 648 648.00 opt opt 1.21 0.30 0
C19-10 100 15 648 648.00 opt opt 2.21 0.37 0
C19-10 200 15 648 648.00 opt opt 2.28 0.38 0
C19-10 100 25 648 648.00 opt opt 3.5 0.45 0
C19-10 200 25 648 648.00 opt opt 3.45 0.45 0
C19-100 100 5 6566 6566.00 opt opt 1.26 0.33 0
C19-100 200 5 6566 6566.00 opt opt 1.3 0.33 0
C19-100 100 15 6566 6566.00 opt opt 2.32 0.39 0
C19-100 200 15 6566 6566.00 opt opt 2.18 0.38 0
C19-100 100 25 6566 6566.00 opt opt 3.33 0.43 0
C19-100 200 25 6566 6566.00 opt opt 3.24 0.41 0
C20-10 100 5 1248 1248.00 opt opt 1.44 0.35 0
C20-10 200 5 1248 1248.00 opt opt 1.54 0.38 0
C20-10 100 15 1248 1248.00 opt opt 2.61 0.43 0
C20-10 200 15 1248 1248.00 opt opt 2.62 0.45 0
C20-10 100 25 1248 1248.00 opt opt 3.68 0.47 0
C20-10 200 25 1248 1248.00 opt opt 3.73 0.48 0
C20-100 100 5 12533 12533.00 opt opt 1.47 0.35 0
C20-100 200 5 12533 12533.00 opt opt 1.49 0.36 0
C20-100 100 15 12533 12533.00 opt opt 2.61 0.44 0
C20-100 200 15 12533 12533.00 opt opt 2.41 0.40 0
C20-100 100 25 12533 12533.00 opt opt 3.68 0.49 0
C20-100 200 25 12533 12533.00 opt opt 3.79 0.49 021



Appendix 2: Detailed Results for HCSpT

Table 7: Results for the TC-instances from [1], setting: IMPROVED (except
for TC80, H=4; TC80, H=5; TC100, H=3, where BASIC is reported, due to
exceeded memory limit by IMPROVED).
inst hop best sol. val LB Gap [%] RGap [%] t [s] tbest [s] nodes

20 3 340 340 340.00 opt 0.47 0.08 0.08 0
20 4 318 318 318.00 opt 0.33 0.08 0.04 0
20 5 312 312 312.00 opt opt 0.06 0.02 0
40 3 609 609 609.00 opt 0.12 1.23 0.73 0
40 4 548 548 548.00 opt 1.21 3.24 0.69 43
40 5 522 522 522.00 opt 1.06 2.53 0.51 30
60 3 866 866 866.00 opt 1.01 8.87 0.88 55
60 4 781 781 781.00 opt 3.05 100.21 52.59 941
60 5 734 734 734.00 opt 2.63 830.15 86.15 5178
80 3 1072 1072 1072.00 opt 3.35 694.51 0.08 5726
80 4 981 1067 857.11 14.46 14.85 - 749.61 7469
80 5 922 1059 830.40 11.03 11.08 - 692.78 6583
100 3 1259 1306 1161.04 8.44 8.92 - 1208.30 4813
100 4 1166 1206 1071.94 8.77 9.91 - 813.41 1469
100 5 1104 1168 1032.10 6.97 7.97 - 30.70 828
120 3 1059 1069 1022.66 3.55 4.64 - 372.46 1707
120 4 926 988 845.75 9.49 9.72 - 1467.73 384
120 5 853 1082 779.39 9.44 9.58 - 56.76 147
160 3 1357 1462 1233.69 10 10.02 - 730.52 177
160 4 1133 1424 965.21 17.38 17.45 - 1244.81 100
160 5 1039 1328 877.55 18.4 18.51 - 234.37 70
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Table 8: Results for the TE-instances from [1]
inst hop best sol. val LB Gap [%] RGap [%] t [s] tbest [s] nodes

20 3 449 449 449.00 opt 3.07 0.82 0.79 20
20 4 385 385 385.00 opt 3.13 1.44 0.96 52
20 5 366 366 366.00 opt 5.43 3.78 2.90 146
40 3 708 708 708.00 opt 5.49 18.45 0.64 331
40 4 627 627 627.00 opt 9.22 463.52 290.26 1980
40 5 590 596 558.42 5.66 9.97 - 279.00 2453
60 3 1525 1525 1525.00 opt 6.41 245.73 0.05 1583
60 4 1336 1377 1204.34 10.93 12.24 - 1384.93 1000
60 5 1225 1444 1089.32 12.46 12.58 - 38.75 163
80 3 1806 1812 1765.75 2.28 8.27 - 0.10 5612
80 4 1558 1845 1360.64 14.5 14.90 - 650.97 115
80 5 1442 1760 1255.68 14.84 15.22 - 19.58 82
100 3 2092 2104 1944.86 7.57 10.11 - 510.39 1625
100 4 1788 2225 1533.34 16.61 16.84 - 178.65 112
100 5 1625 1931 1392.52 16.69 17.06 - 810.46 102
120 3 1267 1376 1142.98 10.85 10.94 - 1611.41 296
120 4 1074 1321 884.01 21.49 21.63 - 1797.18 132
120 5 969 1245 800.58 21.04 21.23 - 498.93 108
160 3 1496 1618 1316.17 13.66 13.76 - 919.67 101
160 4 1229 1678 993.42 23.71 23.80 - 1824.09 58
160 5 1107 1537 888.47 24.6 24.80 - 549.02 46

Table 9: Results for the TR-instances from [1]
inst hop best sol. val LB Gap [%] RGap [%] t [s] tbest [s] nodes

20 3 168 168 168 opt opt 0.03 0.01 0
20 4 146 146 146 opt 4.53 0.03 0.01 0
20 5 137 137 137 opt opt 0.02 0.01 0
40 3 176 176 176 opt 2.21 0.36 0.35 0
40 4 149 149 149 opt 0.64 0.93 0.46 0
40 5 139 139 139 opt 0.66 1.42 0.69 4
60 3 213 213 213 opt 0.77 1.83 1.72 0
60 4 152 152 152 opt 1.17 8.11 0.95 9
60 5 124 124 124 opt 0.05 6.04 1.67 0
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